From 0d08907a15be0b14df89c535dbc8c64306686966 Mon Sep 17 00:00:00 2001 From: ergz Date: Sun, 11 Sep 2022 01:27:09 -0700 Subject: [PATCH] more work --- R/ch2.html | 352 ++++++++++++------ R/ch2.qmd | 161 +++++++- .../figure-html/unnamed-chunk-11-1.png | Bin 16142 -> 16167 bytes .../figure-html/unnamed-chunk-14-1.png | Bin 0 -> 19043 bytes .../figure-html/unnamed-chunk-15-1.png | Bin 0 -> 23317 bytes .../figure-html/unnamed-chunk-16-1.png | Bin 0 -> 21897 bytes .../figure-html/unnamed-chunk-17-1.png | Bin 0 -> 13766 bytes R/ch2_files/figure-html/unnamed-chunk-6-1.png | Bin 12211 -> 12250 bytes 8 files changed, 399 insertions(+), 114 deletions(-) create mode 100644 R/ch2_files/figure-html/unnamed-chunk-14-1.png create mode 100644 R/ch2_files/figure-html/unnamed-chunk-15-1.png create mode 100644 R/ch2_files/figure-html/unnamed-chunk-16-1.png create mode 100644 R/ch2_files/figure-html/unnamed-chunk-17-1.png diff --git a/R/ch2.html b/R/ch2.html index 1d52094..169bd3b 100644 --- a/R/ch2.html +++ b/R/ch2.html @@ -113,10 +113,7 @@ code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warni @@ -244,12 +241,12 @@ Probability and Likelihood gt::cols_width(everything() ~ px(100))
-
+
@@ -854,12 +851,12 @@ Baye’s Rule gt::cols_width(everything() ~ px(100))
-
+
@@ -1275,11 +1272,11 @@ Baye’s Rule fake -4031 -0.4031 +3967 +0.3967 real -5969 -0.5969 +6033 +0.6033 @@ -1316,8 +1313,8 @@ Baye’s Rule # Groups: usage [2] usage fake real <chr> <int> <int> -1 no 2955 5845 -2 yes 1076 124 +1 no 2891 5910 +2 yes 1076 123
@@ -1345,7 +1342,7 @@ Baye’s Rule type total prop <chr> <int> <dbl> 1 fake 1076 0.897 -2 real 124 0.103 +2 real 123 0.103
@@ -1373,7 +1370,7 @@ Baye’s Rule -
+
@@ -1404,7 +1401,7 @@ Discrete Probability Model
-
+
@@ -1417,8 +1414,7 @@ in emanuel’s words

what does this mean? well its very straightforward a pmf is a function that takes in a some value y and outputs the probability that the random variable \(Y\) equals \(y\).

-
-

The Binomial Model

+

next we would like add a the dependancy of \(Y\) on \(\pi\), we do so by introducing the conditional pmf.

@@ -1438,7 +1434,7 @@ Conditional probability model of data \(Y\)
-
+
@@ -1451,7 +1447,145 @@ in emanuel’s words

this is essentially the same probability model had defined above, except now we are condition probabilities by some parameter \(\pi\)

-
+

in the example of the chess player we must make some assumptions:

+
    +
  1. the chances of winning any match in the game stay constant. So if at match number 1 human has a .65% of winning, then that is the same for match 2-6.

  2. +
  3. Winning or loosing a game does not affect the chances of winning or loosing the next game, i.e matches are independent of one another.

  4. +
+

These two assumptions lead us to the Binomial Model.

+
+
+
+ +
+
+The Binomial Model +
+
+
+

Let the random variable \(Y\) represent the number of successes in \(n\) trials. Assume that each trial is independent, and the probability of sucess in a given trial is \(\pi\). Then the conditional dependence of \(Y\) on \(\pi\) can be modeled by the Binomial Model with parameters \(n\) and \(\pi\). We can write this as,

+

\[Y|\pi \sim Bin(n, \pi)\]

+

the binomial model is specified by the pmf:

+

\[f(y|\pi) = {n \choose y} \pi^y(1 - \pi)^{n-y}\]

+
+
+

knowing this we can represent \(Y\) the total number of matches out of 6 that the human can win.

+

\[Y|\pi \sim Bin(6, \pi)\]

+

and conditional pmf:

+

\[f(y|\pi) = {6 \choose y}\pi^y(1 - \pi)^{6 - y}\;\; \text{for } y \in \{1, 2, 3, 4, 5, 6\}\]

+

with the pmf we can now determine the probability of the human winning \(Y\) matches out of 6 for any given value of \(\pi\)

+
+
chess_pmf <- function(y, p, n = 6) {
+    choose(n, y) * (p ^ y) * (1 - p)^(n - y)
+}
+
+# what is probability that human wins 6 games given a pi value of .8 
+chess_pmf(y = 5, p = .8)
+
+
[1] 0.393216
+
+
+
+
+
+ +
+
+ +
+
+
+

the formula for the binomial is actually pretty intuitive, first you have the scalar \({n \choose y}\) this will determine the total number of ways the player can win \(y\) games out of the possible \(n\). This is first multiplied by the probablility of success in the \(n\) trials since \((p ^ y)\) can be re-written as \(p\times p\times \cdots \times p\), and then multiplied by the probability of \(n-y\) failures \((1 - p)^{n - y}\)

+
+
+
+
pies <- seq(0, 1, by = .05)
+py <- chess_pmf(y = 4, p = pies)
+
+d <- data.frame(pies = pies, py = py)
+
+d |>
+    ggplot(aes(pies, py)) + geom_col()
+
+

+
+
+
+
pies <- c(.2, .5, .8)
+ys <- 0:6
+
+d <- tidyr::expand_grid(pies, ys)
+fys <- purrr::map2_dbl(d$ys, d$pies, ~chess_pmf(.x, .y), n=6)
+
+d$fys <- fys
+d$display_pi <- as.factor(paste("pi =", d$pies))
+
+d |>
+    ggplot(aes(x = ys, y = fys)) + 
+    geom_col() + 
+    scale_x_continuous(breaks = 0:6) + 
+    facet_wrap(vars(display_pi))
+
+

+
+
+

The plot shows the three possible values for \(\pi\) along with the value of the pmf for each of the possible matches the human can win in a game. The values of \(f(y|\pi)\) are pretty intuitive, we would expect the random variable \(Y\) to be lower when the value of \(\pi\) is lower and higher when the value of \(\pi\) is higher.

+

For the sake of the excercise lets add more values of \(\pi\) so that we can see this shift happen in more detail.

+
+
pies <- seq(.1, .9, by = .1)
+ys <- 0:6
+
+d <- tidyr::expand_grid(pies, ys)
+fys <- purrr::map2_dbl(d$ys, d$pies, ~chess_pmf(.x, .y), n=6)
+
+d$fys <- fys
+d$display_pi <- as.factor(paste("pi =", d$pies))
+
+d |>
+    ggplot(aes(x = ys, y = fys)) + 
+    geom_col() + 
+    scale_x_continuous(breaks = 0:6) + 
+    facet_wrap(vars(display_pi), nrow = 3)
+
+

+
+
+

as it turns out we learn that the human ended up winning just one game in the 1997 rematch, \(Y = 1\). The next step in our analysis is to determine how compatible this new data is with each value of \(\pi\), the likelihood that is.

+

This is very easy to do with all the work we have done so far:

+
+
d |>
+    filter(ys == 1) |>
+    ggplot(aes(pies, fys)) + 
+    geom_col() + 
+    scale_x_continuous(breaks = seq(.1, .9, by = .1))
+
+

+
+
+

It’s very important to note the following

+
+
# this will sum to a value greater than 1!!
+d |>
+    filter(ys == 1) |>
+    pull(fys) |>
+    sum()
+
+
[1] 1.37907
+
+
+
+
+
+ +
+
+Important +
+
+
+

this has been mentioned before but its an important message to drive home. Note that the reason why thes values sum to a value greater than 1 is that they are not probabilities, they are likelihoods. We are determining how likely each value of \(\pi\) is given that we have observed \(Y = 1\).

+
+
diff --git a/R/ch2.qmd b/R/ch2.qmd index c4b1d05..4701623 100644 --- a/R/ch2.qmd +++ b/R/ch2.qmd @@ -339,7 +339,7 @@ in the book that we will learn how to build these later on): |--------|----|----|----|-------| |$f(\pi)$|.10 |.25 |.65 | 1 | -:::{.callout-caution} +:::{.callout-tip} ## Note its important to note here that the sum of the values of $\pi$ **do @@ -364,14 +364,15 @@ and has the following properties ::: -:::{.callout-caution} +:::{.callout-tip} ## in emanuel's words what does this mean? well its very straightforward a pmf is a function that takes in a some value y and outputs the probability that the random variable $Y$ equals $y$. ::: -### The Binomial Model +next we would like add a the dependancy of $Y$ on $\pi$, we do so by introducing +the conditional pmf. :::{.callout-note} ## Conditional probability model of data $Y$ @@ -388,8 +389,158 @@ and has the following properties, 2. $\sum_{\forall y}f(y|\pi) = 1$ ::: -:::{.callout-caution} +:::{.callout-tip} ## in emanuel's words this is essentially the same probability model had defined above, except now we are condition probabilities by some parameter $\pi$ -::: \ No newline at end of file +::: + +in the example of the chess player we must make some assumptions: + +1. the chances of winning any match in the game stay constant. So if +at match number 1 human has a .65% of winning, then that is the same +for match 2-6. + +2. Winning or loosing a game does not affect the chances of winning +or loosing the next game, i.e matches are independent of one another. + +These two assumptions lead us to the **Binomial Model**. + +:::{.callout-note} +## The Binomial Model + +Let the random variable $Y$ represent the number of successes in $n$ trials. +Assume that each trial is independent, and the probability of sucess in a +given trial is $\pi$. Then the conditional dependence of $Y$ on $\pi$ can +be modeled by the **Binomial Model** with parameters $n$ and $\pi$. We can +write this as, + +$$Y|\pi \sim Bin(n, \pi)$$ + +the binomial model is specified by the pmf: + +$$f(y|\pi) = {n \choose y} \pi^y(1 - \pi)^{n-y}$$ +::: + +knowing this we can represent $Y$ the total number of matches out of 6 +that the human can win. + +$$Y|\pi \sim Bin(6, \pi)$$ + +and conditional pmf: + +$$f(y|\pi) = {6 \choose y}\pi^y(1 - \pi)^{6 - y}\;\; \text{for } y \in \{1, 2, 3, 4, 5, 6\}$$ + +with the pmf we can now determine the probability of the human winning $Y$ matches +out of 6 for any given value of $\pi$ + +```{r} +chess_pmf <- function(y, p, n = 6) { + choose(n, y) * (p ^ y) * (1 - p)^(n - y) +} + +# what is probability that human wins 6 games given a pi value of .8 +chess_pmf(y = 5, p = .8) + +``` + +:::{.callout-tip} +## + +the formula for the binomial is actually pretty intuitive, first you have +the scalar ${n \choose y}$ this will determine the total number of ways +the player can win $y$ games out of the possible $n$. This is first multiplied +by the probablility of success in the $n$ trials since $(p ^ y)$ can be +re-written as $p\times p\times \cdots \times p$, and then multiplied by +the probability of $n-y$ failures $(1 - p)^{n - y}$ +::: + +```{r} +pies <- seq(0, 1, by = .05) +py <- chess_pmf(y = 4, p = pies) + +d <- data.frame(pies = pies, py = py) + +d |> + ggplot(aes(pies, py)) + geom_col() +``` + + +```{r} +pies <- c(.2, .5, .8) +ys <- 0:6 + +d <- tidyr::expand_grid(pies, ys) +fys <- purrr::map2_dbl(d$ys, d$pies, ~chess_pmf(.x, .y), n=6) + +d$fys <- fys +d$display_pi <- as.factor(paste("pi =", d$pies)) + +d |> + ggplot(aes(x = ys, y = fys)) + + geom_col() + + scale_x_continuous(breaks = 0:6) + + facet_wrap(vars(display_pi)) +``` + +The plot shows the three possible values for $\pi$ along +with the value of the pmf for each of the possible +matches the human can win in a game. The values of $f(y|\pi)$ +are pretty intuitive, we would expect the random variable $Y$ +to be lower when the value of $\pi$ is lower and higher when +the value of $\pi$ is higher. + +For the sake of the excercise lets add more values of $\pi$ +so that we can see this shift happen in more detail. + +```{r} +pies <- seq(.1, .9, by = .1) +ys <- 0:6 + +d <- tidyr::expand_grid(pies, ys) +fys <- purrr::map2_dbl(d$ys, d$pies, ~chess_pmf(.x, .y), n=6) + +d$fys <- fys +d$display_pi <- as.factor(paste("pi =", d$pies)) + +d |> + ggplot(aes(x = ys, y = fys)) + + geom_col() + + scale_x_continuous(breaks = 0:6) + + facet_wrap(vars(display_pi), nrow = 3) +``` + +as it turns out we learn that the human ended up winning just +one game in the 1997 rematch, $Y = 1$. The next step in our +analysis is to determine how compatible this new data is with +each value of $\pi$, the likelihood that is. + +This is very easy to do with all the work we have done so far: + +```{r} +d |> + filter(ys == 1) |> + ggplot(aes(pies, fys)) + + geom_col() + + scale_x_continuous(breaks = seq(.1, .9, by = .1)) +``` + +It's very important to note the following + +```{r} +# this will sum to a value greater than 1!! +d |> + filter(ys == 1) |> + pull(fys) |> + sum() +``` + +:::{.callout-important icon="true"} +this has been mentioned before but its an important message +to drive home. Note that the reason why thes values sum to a +value greater than 1 is that they are **not** probabilities, they +are likelihoods. We are determining how likely each value of +$\pi$ is given that we have observed $Y = 1$. +::: + + diff --git a/R/ch2_files/figure-html/unnamed-chunk-11-1.png b/R/ch2_files/figure-html/unnamed-chunk-11-1.png index d6b4e1a3abe5176b58df6330b9cedc1a86594c24..705794957c539370c3afef028c04abb5fa3d21c2 100644 GIT binary patch literal 16167 zcmeG@2~?BE)=2Hj%9eD1n3}?2s6e5VC&%BoK`4>v`{;^S^icpP%oHIXK_UoqO+h=WcW7 zg3DgV**Z&fU@+M1ubk}n!(duy7);}r=^CKt<+D|TFc{p`WsjQ!_%94*1%r9RtgK*G z;5P~8oj+%9{DK7wOifL}3q`l$@wT!`vhwz}@&>>8R!N}IofVJ2vvY#8zrV9T_@y`} zRCoheR-h@zdV?p)I|;OW?f+cxdB>@mgRtgwN`APYp(Ua()K@@*yN`k*~IE%u9^1WgC-d6eE-uX#Z`AOgx zj0F!ppAH(74?z_P&J_v%6%_vp7OR2xuP0vrFgK>(1;DP86#G?4KC<&|z z&?u}5Fcumd92^-L0c!v#U>Zcvhrm!41!7e|Ebv|d9>4=rAqe_D5aj}xIwQd8P%sR( zJWlZsp4iPj0fVi8ePzGhEj(?wZJ4x-b%w#cJp1k<3$t%l5SJGP`fd9>>F(oz)aPek z1qC*|dopunAkpgHPvI_?@*s#((?D%WE?#oev^i~%@scCCeNxjny5>5sYKT2_Di8s4 zI`j}S4)7QaP&vk)0{b7J38Zt46gP$q? zUbxw9{RQIQslWf?d|1D*PC_frKO*NchYX6Tksn%$BnD|6j2hNrm$1{}B)6)KTi{el zSx}crlU~U?yYPN$Im)7ndb4sfnf>mAo%XgYx0Pfe)1ySnu9RUnVWpJ=_0`=QIO(l1 zzM|LVi7^2`MOj}xj&6J05u>YjIN2V}8S-+&=S2%xES_(wHn#Y2c7Lf}O(4!EXx7QG zuxH=8rJ}a_p6P^pQem==SjW_h{&KOn%OLH}jUd-qCj)w6`!cIDJiO=X_37i%WRH5P zJ)Jp^f+M)G!EUbp7vZzn%U0}qDguai!e!Ey4M?a5Wt?IHy{r^>_pvqj0*;sTsDvhM zNnoLt$qIvs>x8EFy^P2>98CwZf|qVqb=i=^ns7(OV=TEzGxj{{YGn$eXzYauLb~Pf zQjeiyt+jvH?`A(8{PQmfpL=b*J4uYG(+yuGk0dOBoZy_$STg*nnC@7Q%B z+io>edM@YJs?FpVH#O`ZnvwK8p1zTw!%Q}D9?{BA7FPuen`+}fCAv5E;3n=(C-X3q z^|xU^F*r#Lho+)PQrlq5_^ z!jxkCKVltz8xM$a_&{jbx2oHhlRgv?@cpUR&Z;<)l(nCF8qJ|SZJoxCH~-1kgen}< z_IY@}b%83>>rYRvn#RA=ZA>;#$tjKs3QK8-N2c9V3l5Q2@;oYuc)Xu}U2Tq^*Ee`> zSv)GD_0#BF5oPMvHEMq#P-V;d9IM>TX}tOoLAkAkwvJ# z1~Y{pbbHoJ_TDosiqPNX+BYxS9`2>P+*^&fxJ9|z6!0mw{5PaUSHKEmdKCXGYs@Nj z$3K=2X5hR$H!i|L+%ZEuHA31dv}?7M_o5DM%(j6##>xvIX);c3GuKolsBw`aPG}}} z$mVH(7nNkk9}|z(yE9s~_)TMy+VbOHPVA6j7mR^!pP{=xCdX?JBg*G-xVNMzzSlj+ z79|^Hb1zkQIUh8Kd&*>j_}W_hjrHqPTWF_kgatVRd7b%AdQ4D2`V4AqK>CZtzp_aN z)EIARZI0A)tG8-n0cz@r>4WXV+yKEXNnuI0JgnCs2RiF>d-JM^eHi+{P*0mbDxSFm z;z!9}RB!mrG&y>VJ7AtJ{~(ld4B}K9^H#deh{N4s{Yxccs-A(=lq3@)3H+g+ouk?i ze-w$ewL4zCIOdr8(gmBdnD_HUnUc{qz`k4SbA zLGt2~=NIL1Lj?wrY1`EprO7WVbWa)-Znl+mgzGm{mXb7P6FPabKJq+Byd+3+Vl+-i zv?585&=?~eE9=)EHr=%5Bb6C#MN|vO?0z*f+@(~TBZ(f1Ar}$aM|*b47pnl3pL=4| z(SSk~3Uev(+#1maCYCT*FL0g{hWr&0)8k9?9~BtL_TCk^r-mZA+A2k5z33XZdKg2? z-PCF5UasHRY_g3Y9BzxnmE^{pkKmNCeff~6gL57ez2%yUoiA>;O5W$jm%7sk;{NI= zRFuE$%er1v_=m7&Toy|9ZT}sRS$!XjqOK>ZrfmCsS9DkXDwSf5c_U3LXg(x6O_5Wh_q??F@q-ORWPp;0?h?KXHH5ce8?UZBCmJ{e^f=e4o-t_?$ zvC39ci9rI3Rd5z6$t3Q=zmuJJbG2(}fR(>cP#n72&~zF->BRl${^`6oi|gX>nOkso;}8>&=F~m9V>>%w*+&c#cW>)f z@7jURO&Hz!OQ6!!FRz>dueMSr&2<_-mtY%D(w_M8fTqpl=(#f-f0>|NbL*fw>Hvi( zXbXNpA3-$Q`I^w(dv?cJr8DBR*LzmqA<~f;52;~D=Kbir40uAU>W$t5xpw@6PdjyW z`Yx5~F$kfL$9ihb6U_+oTG`E*z8MH3!i>yM*=+d*xz=`UOYJZv6^j*ZZ)eIi;mJ_Q ziN!k|h^a2!F7z*hw{{zIfS3zwxQO)}F#5SDcxv=_LjpZmEei5_qd3(H5 zk{ZMdbSrWO;fi-(@K2bLFC!UcnlmPZq+Tne**OqR6Wa!&PN=>`LST>N&6p1VnH%IY zpw8e2h)n6SzQBi{GRqBa+vMIM_?@&oA^J15#qU#Z3(w+5b9)!XZ>WvINME8c)B92u zO-M)uA`|Gt!x>nId9(``i1_c6PUrH<3&!Nvoby;AkHQ>dho#%@*nZ$sp?8&Uy^qN@ zPG`u7R|aokX4uU59doY1ZF$3~!feNqb%NEu!wl>ghQKt(N)#Acr()7)8j)=3nAF1h z_?o#?{?jr&*}uE+`Kd0k^w@-sn?ECOWG||0Dl8JRnp6O~PH-CpY}^AR_?C*5$Ty*;{pv`px{p(cNK{DjD_o!v(z#mMwiQJ%)5UEK7)scAcf zt|5G24Im;V1DzY_#4T!qD-utuq22S)I3+yiJO+O6nS<9X2f)Jl5olqIU z;Nx4zbGwG*v0~;!HPx?Fm>H-VHV(+e9AyXrw&Njd;wp`tHlOax8KD=W7ne+51sInmjXAj~S|A+u>(!Ggg9 z`=FD8-}s~)wyeQIQDWONAl=ZrID8;ZYnQ?~Slqq;eWpSz4|m(-S+Ib9Qn( zncH|*DHy`DNG;M zBASku89qZz@2iy5`r}2?lE2NH2-yI?Un0asIN+%DZ1^fMx`oGpzNTI6KW__#s?p!R zv>$gwglld#u`Ixyu;MVRi-Z@vepEwbF^~}4k+x`&tjYMNLG$KBlvA)w>s~oTS7Q;- z$OJa;e49zSTvQ1ZvpMz(Qz~v4jADL;QMr#!dv#~^WhNJ4@C-(bu%2hAS2Dl(jpv*V!-+f9fXe5{zoPl_geqqW*m3P? ze3=Xt*dM6Iu(PO3-v!nI`Mqd0VMK#m(9Ar=RDI@D&^?ul`0J!-K-myMLg^kUZDzFDJ%dJ{b_YSRrfQKvXy%DU*NO6=LT)Dp z6b^+S=e6Gx8bIwE8?UuZ=DJ)OcCA4~`iMH2X=$KbD76gK&@env;oV*3b{4zUVhN-{ zz7dzmAoz-23b5`bU$_%MWzX6>pmqpv8>uY(nG8urUwCequP6-~vRg+hjFz!jce*L5 z+DKcuq8Mf}p0Gydozjk8h@W4VN>8~%NgTw+C{vV^a6(IVHIBgBqEF+YtTydF5;m&4 zD;{|o(#O&*hiGH)$vhg?Kt%Mnvo|D%kDFAiK|hi4zW7rAp0(IW4oFr)8JW$ZNh?)z z@S&F(IV_v{OuoRUZ($!<%_3esu*C@^SKH`)GuEXqQ(E838=tWd;;QcOU_M}*;5pelJ zMvLemPZ}-aTQf}X0SRiZh~36h$y=DO3zs#KT8pDbeT+S&pMJ2DO#`nqB7Gu^$%bJ} zFWJD;Hp&~2qErv)c-tvun7fWs3B;+q>QqK}Dp9WTxBfq!AB0@j5Nkg>a(iZ|qE>a{ zxMWYr3q@h7>cr%N@jFG`r)rDTYZZY))W+||&rQ}oKdPwMRGrJ%>kldFPbQ9LuJ@g5 z167v;dE=)u^F4o76r!pQX#RXrOGIWT8-8wlK)D64kgK!c#Gelb?(}~j$EijCqarZH z-YNF}ujrB~L7Ebze?yRz>B#?d0;B)$aH=8@9eEmt6ve2AnXim4EZXfIT0ydsum_n!Vm1X_Clj*`4PjS(xoPH)-9TPK}O=i zHHBSTpdN-&L@SZkG1X%*N6M8}E+SGaDakhEoNbzgI+ z8>FKaRHj&xVMhgb| z6zw|efwft2ZGGnIus6c9C3tp@-m?Nz%V}?yFJ<(eJaDDx4fDd=1>^Jcj4GF#DDUq? zw{p(oE-LSCSt_s_duh)$kYsG$R!V$+{H0`B&aPAC(g-q$`vknFaah90(EHf&(Z`Zs z8S^lACno>JFFgHUyp&cs*Ttr(xui#K@=M_34m(hiY>~r$7l70Zu}X6fJN--#VYR%5 zVr|x{4es6aHZEVvjs;imctAje+tC>>Bfxz;$qI5qM=|)2F?0UW#l25&_T@q`ejs(y z%8BOJ9S;!#xu^EZacEt*;Cb$md37e%h{%Y!E;)%m<=~|ixVd#E`r{o;*WDoTzY}d@ zf*8mX!SJGi0e5KBor0Be2_Cd1ZPWNXUlaMaf|Md0_OLNDGh9_|U8N6w zBS>LxY|gQ2rU^=yRtb``QY+MWMWg5y`}BaQ&a5^&jp*g2`PO$SNcv!+KsxDW zbt5hd&lQhyN+NqmzjlZC@Cf?ImY(;?^XsbOiIKKWU62GtfKsYF(U=_Hs0d1;%qwEd zSMY2r`!tql_q_V?1QwoXj=Y;~dMuTgQ1E@WSNg0Y@4C+{sSEyyCwGkydVn9(V@*YGA{H)*ZT2VU(e|4c0f~WKs{VfFe#PUf@cif8TP3y z^QjM5-)1Qrki`0>AGU;3i>E(mzOL87fli55km=@Ivb;#eBkambTsC(Xf8J8KZPDaP zOK^9Y;oa_ou1m4*EyZn-66%I3S^yNb5~s;;{m4_H*?oefs(U06@|N5ZvkUzFYy2f` z4bV{;?$tMYH6r~}eGcwbNX9?AL;B|fZoiQb#%@Va@T8UG2SLZVTj35SnhOq0U)Sv}_^mV6NJx&*YsBA2qnaUh%D_B(f2qNjTWkcYQ=WSv+YOFt%66anb z3Z@g*e|QCk|47WfQW*33bEAH}Cb;a*Af1*Q74cjGj!=8Epu%6St{^{nBAFvE>wL}3 zLNYv}yY&Z&#*3KJb`}GpPielB%Jh7MjmD3<>Rj9n%0FHklMD1I?&*ex!t9**Lft;o zB3co9VBkdmXh-HAn{9+s8qEQ#+gSpw| z*84&34cvm-gI7&jj^hELU(Pj0zU1sLlp9I=nex{rW~6zx+q`~6Mcmk{gH&uOp(OrS$#j3LMn>vzfLu zNu7-ECn&ncu!!N!+f=#+jo#P&BBc?xu_W@0WJZm^&=&hn#$d;gGfZ4DC~KWJ7r`>( zEUwV*Yv|O%^0r;&AFmE>n{0jQWrS>BED{>O)XXjM0fo%=xr uRcO@X@B#jAw(`xta-aDh$s!+ukL|j<3gL0K4_wWLedVy%K6}T}bN>V6!H~?v-f{G+EXn>GGspV2+P(-Q- ziHf2`K#MX360Lx^SQ(_(TJ;3M;i>STAb1e?TMSPH8{19wpxxY(-Oy+^ zH26z(ORfn5alyf+h7AIr)Sy(b6$hoVgNnfhfE`re=wx&<*r@2_8Z?!c3}Qip4SYdO zrq(3a@RDnQR5&Cx2%ZX}NQJ9#q!yca1{**{yHS(TYH%Kv2NVZEii68Xm8P2h;!nI~C3@4q_LlvOzc%Aou`m0N_#4 zJZdtp25eMb4G0VL_4N%74uWHVSio)oyBGjLc~pQ`1MtA_D)b;euqyxnzl0$?L8i_= zwew&E1Y#Di`h%u)iH|}ciy^yqZ1s-1KEN3uw|AZH5MP{^v%qf4kBdoWw6M_4OHy+l zp2{pg`)7Dq%j@6gScZ|{x384$O?m_Xx0*PQ-=tT3leMYCz9R%imc|`(HM|(mHkOqV z%y&;Tf*|YuP?$hS^}mvIkcQA1q-8o^Kz8XFLoUr)30d}~CuFB31(Lc030<7b6Q5M_NFU=A}+EIkReQ^F|_3|%SJ*SYI4e#)CeZIG( zw7esg2mUd>Fz@mXWbQNQY39$;4c@B~Nbd2vy~(phfp_;ALbD9?Uz!A=nY z%?9{>hD2#oxGsYzx1}w@6rw9eg!DzhrMa8z)r|1SJG$U1iHi>`6PxrcLY>4^NVuJt z>s{GRya|r$Z_f9&q)0ms(dEKg1!^5iUfcVsv1^SeyB!}gR>w@K47-AZr**2A!PLBX zbpna|7w4Y**jR6EEx&DxEj=pGzakj>d{Dl-BZcZfLByU4@p|5vQiu>%+Y5X4 zB&*jf?Zj0VM+&MUY-Dd^ChZ#cAb;@vBK{{7i%A5+Kza&s$ReXY19t#n7{yD+5_L(3S5q(;@_AwwNoRCpqQ0a_He-(kxgF?|9UR?sHMXY`qzM4tDwRKk ztL2RR?B@PeU$F*?w%KMBRtwJ>Oc4};eE#cE`g!8bAVbz#HP@P^Ci0A(7~&ZhJ=4L`<0JYAJhg?En4poQdEEt3^jAjZ1<@3^ zy-Zneo1izn(>xwGob$*b8|Z&q8bMmw%9}U2on~SU=HI?nF}VXLfo&)E)Fh>vZ5ZdE z|F?Z^+{uk~>=YleH?MZl1?azjoJs#b8*?48i((}JWnU(;Jg zZLO!3!?bb$?cqPu%7p6~M_GafxDH?SveR7UPEOk+wf8)2?$yDFA>1d+uec3?>ytE^fc|B38;38j0&i9~9Pd{M~KnVOM%DXTB#*SQhz`UDWis0)E>W zs6zgx+q~NZQ!$#xCW^6oq>>1y{e+h}HP)nx64qH3cYh@D#)kkvFyziHZ?{ z=M4a^RS_#~J-2vfd)A4^uw94pcOVgO9D(doeYo~`ao6^*HfJ>#hSu#wepyALdF796 zbzAclOyFAYMHMwhFEIDGpe76i>}8RXeWQf|vgqeY5#G7|^h5Li)buzlh)?+7zRYpM z#CR(YJ>0Gv1LSwr=W5OX&Y;%KI`V{bZ~yp%yFT#I&VFIGqTx1pig6o$bc)a-pFHd+ z|11}e^Qmn+Bi#tD#xK2>IlgnwEj)$IYi-(pk9$I&T-zfrkio|k`Ajm%a>`oC^eb4(rP@BKwJw@_7#zp`$RC)9 zpJvPdZD}zW=3zSyRXkAizIwlgaR3Cv10$wxf{! z{2eRHH${uGs@`86XtvHqainqyo5r@?Qeu0MqZc{c*XKYcE57ye)NHc&n88y>55^|O z!?7d7_01PLq>}hdI{m>o=T=Gc1wdZc;S%^Aa$*+_czT%66O0z{Z$BvU7OMLqr?xi5(fVC_=T`wNrE;PP}PqJS6_4=ln%_f$|a8Mv6wAbHKk?1 z>3>UE!%#lIa}BYu@KB79MjU^d)iNu=SHRH5(~Y-cflNN3Ff-%h(V~c(?T{iwfb; zySB4J!n1+K68Q#=hD)At)aQ>}A|YH9>}%4QKIBVh5c-}EyUoXT`~k?=iB-k-OU&_B zFJyn+;b7%kwYpW5DSEKQE^=OP)IL1kcL>|T<&1VauyMah(f!%CfMyuO#992qN)0`6 zE@jf9V3Wi`0w8(Uh(qAeift@DBI*ORFXI*2`G8E2yTJ)3Y{}Ho=um&7n}04!F`r^f zU^id#*!^k=9dS;>24+KZzSwWPr$rpUm@=WiM>Y%<^>(L=3WY>EakH|z(N(iP<98Kh zPT4uc)kByl$DgNA%wq*3ILzM}eW|O0_Le0XrG8hAddu35kMEEwdSV9FyGp z97id!n0IV+Q?|K>7MhT_h&?GYC0rsP#4;j=>ul)`@*dH+zR=)?mZ7VvvcG8+HP_o+ ztEYvH^9hd+8&}wC5sa@Gy(``pGiASWm@_1(c$oQ6rlFPvF5Y6tjNFSv;D=I)p-QpV zmov+(81pV(>F51H$|i1J2|cf)Hi{Ro@A;ZFjPRD`0(NqbfSoX?+Tty>9}9ge^8L!Q zHlBmpdAiP(HusdN+FZJZZwy2drTH9$8__t=%lXYwQs)mUo9b{W&0e=|PR|mi$_RtQ zZ35?hT6lI_vf6Ff=^iv!P`mCa!xy`xb(O`y#wTHF-kR0cUWWQ}W+>>g6!>j;*De2< zb_SC)T-`vC5+tCOd8)rLp<`j;-+hJQ^ETS##A~K9pLPGU?#$0HE}ef7%YyacxtBfwQgP7PCK1Rf};1_!Frfja)#ZD&7D z_8{30e@JcfyL1rt#{f)F z$symkB_rR{W~%*qO6GwAcC<)#WV~{GVCM&GnIlWQm(rnVYMtR>x%J%SG(j>~p!-PK z%H7v)FxQfK=Oq;vW*bh5(9Jo50?@N24CCGt3|Tg7H0v!k7lhsWlwICXALp4dexFL3 zkq?@8uM&<=e4nJ57Ht}ZC8<)qaea~MLtFGI``IpTi)ob7ky-`?>ku+HYkIX`XA~c{{Z=Qyo8!2pCODAc21T$*QrB8YFQxmBG z$hw`sro$Jw`WgCNx-sD*GNY(mUzTJ+MYv!6$i7<4_LmzvJNrG={_?<1_gTlTjGx## zUo$B)7SRVdYo#aIoj556E9MC*$#{iHCehz|L>#4J%~ZJL8a~KIM1`M*R^m^K(?gMg z7A*O)Pj!~pOi3D*Ml?{OxD}vsxuIbe_`dr6J#m%;rt4?th;tvnqyQgPF2F1eB@0{ng^1!9WgZ&;msvwqj&=6u%LDbHi6J*a!M7zb*uc1u8^bj*mcu0@ooij101X^DUQaSI;+5io4&|(O%itS3)gBxDXzWo7kN}iHIgEG%mqXdwap*(M6ds+3QFN=zux`?_}$K zqZazQC~md-w-D*&QdFnLu7iVvYHp<4xw{+SzTt2x9!I^C^P`;?XklAPVT<0iNwHbJ&ZyUTv836Z6FmI2?+(LyIXe0X_JQMZ6YH`8s(TJ!D8~Iq6ub7GS1Cp&*w^ z?56xc9`A`q;33mUeULi_lbgrXn1x;7J3>4**g1bPVg}_%xhv&gAdifBdzo51)t33` zuzNb}{$B{Y_dyjUj6>F_STL(BX&i$(Y%T4u+pcA{at{SvoGq})SY)I83E!D$yTvvj zMkKav+NY(xC(@0uS8SAxwY8j*;^P%%v0a?uBwuGje^QZ_jT?FQBh?TlP?TIj_yMKm zab+^`P)Ozlg1B0y6ja$ZX`2LnZ2lfqM$yCZJM!+q;k2}rD}`uutYmZ%Un?dV05fyU zKCG3mpxBmRU41*+7_!pO0Mhfibj!!Ma^+zfhJ|2^)Gw2~MxHW+mvqM|NB`l2}z zef^eJycDq^qDD{BeH9x#_{k|Fc&Z5>7mkc$)}fs7%<<1S7w?k4uRH&G{f~;b-JBwF zS)};WMYwU0Y6KHxb(N98bTHg-YX}W@)#TGv=f~|&^2l+WJ`tQgD4jk(o<3IBI930y zw++@2NC1+tJMxJt8&q?-l3?&!l^vB@E=qunVMUc9s2#M{LRUW zma761N0mJKc*5y3GJBv($<*BC+|)gzO37@UxX#(5HK@H#-g_bR+ynsgz))Ej%=qYk z4Gx|p{?F4mJ?Otw1g6LNR>B>U(AzC}43&1uk5g-?hd9A(@ls^)V|W%4eTL0209{ zE)$JafiW)c21+{!b){Zv7wgEL54Li^f)~je?XJgsE`eP!*2K~=ag%ipOgk#Q<+Dq8 z3|a}i5+0T|7bfX%Wfb3%EuA{Vq&tEh1@uXtB?ZPv-E|tlST#|h@-Q#QHyRds$|HEP zyd}_QSBj=AD&qd?9{=v(ci>%us(Q*a|NC%eteK#XPl$culvNw1uCGeozr3to?w$jt z1F1@{Cg@kEq%iR|v0f8JGb-x-X0ak%`kGw*(pX(*#aA(+Tb+Z_+T3PN2Wnf3^e4Xj z&Bu_|K;GFg0r>A(ko7OGSp!p@Q-&WGmH{*EtXH(_gXM31t!75TIB@ZY!J0VfRYF&sL844fGVbrKFrrwjs%|^@V0VAhootxfP=C#AL6-}%vKU%f zhJQVzJluD(fN)~Cs*jDr4>ySZ=!y&;VkBw-n&*fC1(^ZVcUe<%*^fCDtx`gvqukHQ zI>~|UKuK|r&=6t5q7ln*J5Cz0#4lK_oV2s^Xcg|dG3aZ--?<}gY;<}zXNRM#QSu^& z5=Fzj%OKM6Unmo8XC2eU7K4c$i>cUZHaxtOS-GYGFP8K8a(C zFKqy^1zqD$VtYJWa3FsmLIle`-!b#6jCN}Z|4uZTr)GQrAIy~-dd=_7El$bAKf+5+ zI{y00?w+QeA`$E(P%!;G1E6-rkv4jqMh`2!pRGd;}ge2w?90{Gdm;!XbSa)+M(d#Xk z?ecOV)PH#d&Nb5Kg~fecnQL1K<98aad>o%xHS~&M{bAXxm3jRjuO5~TV*4^n7NEwe z;FQEFTZCPiw56(7Dd-M1QD^vEKKI^mG3D;>a|8obz1jTQTJWyuNP(`bLFn7&@6TDs z;rgXVvJd`nM9$L(;%T6vERvCAYgeuqbr!>uRxRo_Tx;b}A@4nrimN@U9k=MeAD(o9 z2~8sIuvqU)Xw_{nPfCHWT?l$B@t`f2U6S6Xk@`Sl2R rahdB*4!5F|zWi@W+uzqT=K!!(CT>RxwjMKtfX^-$_ZemM6Z0TTkI diff --git a/R/ch2_files/figure-html/unnamed-chunk-14-1.png b/R/ch2_files/figure-html/unnamed-chunk-14-1.png new file mode 100644 index 0000000000000000000000000000000000000000..847f11078dc9cea9c88c5009c4e72390437bc240 GIT binary patch literal 19043 zcmeHP3s{p!)((M)hC-~ya ztQQh01(7PcwqQYsf*^`WDpraSBKL3&AqlyE-#;G^g6QtEyN~<)yZ@i>`A{;PIWy!hC}WhW2t3>(E_mT07_Le4 ztVs*6sR8704GeQLoVZ27+@cKR@5lplVYs6pyrU+qqXzJU`}+C-Q&0_%!rUSlP;?Z) z9W`(V_#?s(@BlSn7&h8E`!G<|jITU)9zdbyB_cn1>7BwL6ly+dllxk~=nDh4!uSj@S&TC zx33%ONOXD$T=c(V47axkxww7tGtb(gY&a)q(R*<2SP#=P$Gus4ixSW-TebFS!$F-` z$FR&L?EXXlIQmIK5a=;#Q#J|LfV1yscY)nDBz%V5l7-nMeGe=q=B&0m ze5^RzE%|w8q#kMVEc(}&{fEh>>(1XB`M08-i1HwZoZKl^)g7?G?JrX-R!2B7>E4oh zejxE^LRDK^gS{w`Hd2UEylj%qfDW_8E?)fuqISqO}+IF0gb|4A8 zyhNlw0vgF@r#NJ3z-U4*cV>tOx*ds;>`S%mL$piJqNt*yhJ~h#A@BUFXJhyr3i0!$ zC%&J}Pex?!s3h8YH?48W|0UPbDTieH)2vX)yuKK&hb5}EOK>Svc%MzP9D~*>`5B>i zzWOThNIl7?pPx9CN!&s_>dy+$pVY_LS^Um|WJR`61FfrgD=d6`0c>Nov5eSQdb;l$ zH0aD|fuMR>9E(C^M_fU>EO=FCW%OA+YYgFhk{2o`S+w-hf)5e=9x_l2_SK~eR6AwK zJXqezC6JH!&fz~Jm1x`aVr5dE@T$cM`7bNUWia=w>lOC&LQ=8*6CllR8PC7KJhyN% zPbwv0#lv-`f_?HHNh8w{T}Bld3dDzG{zn#bzGRG=ger%me=l$uMuDoHYyq-OjA==w z-mDKbV1bM^6CZl`mJw!`j!>tbQQtvl6#w*8_#78>;gJ{Cf%GB)eO2SR-AG)qt;-r? zF@JC!K@~Lxk#Jl>z*gUr3oYMejtWEnqnh#5_ z%?=;xIqp{`yPS$xK?HytVT%1(<62f(K3w(v)TyoOCO}1k!XPdeyG!{nruLGnT zv5aHRuDB83uq)DM5A+`{qG6uvfz32Pyy)x9UB2`_f0p^Zz<%h@oC&|~ze&gjOM~a< z|3ckd5`Sq@GywpA_G52WRIUZ{#NbOC?9VylF$6^H%PaBxi}}@gIcruOLoc1Q{#f?D zgNX^bBDC!>N&A7cWzu?+=;X#|`CiwIPHAt!(jwYc?Bb~jU{5C4>hgZ|p~c!L7}mkq zmUB2FOKY$RXiqn+!)F)rw3eDpYREtvn|0@FP1J_t0QN9CRytjQ_@>SnMx({LiGu{Y zb;dB+7_5C*6m~Q%LfDfjcOxp}L7dElm_sVYJkj8+^>!9H?qEb!F?|+6A(U*ib5&%I z2Kw-!7GNjY?))7(E<*SqGn3-VmUVO&6ApbN{Ee`Ccbv_Z9gJ|J93#xRqxjG}tGrkw zGLikP!=D)^ixCZUoATJVA&wIEW96Z=jd`=|?aL2{n7lH1jX$%Q+9_|VOvLlMNG0B^ zFFY92QbYz=aaCRB_l4o^F++uT{)5Aj8u))Oo6oJM(D;zzkZKV>_DOm#`%q43d4&`-dt%9XpazjZ`G-<}=%ZX;bWa7LB5whGI$_!40~?7) z=n~Z>Mc5EF(oJhRgBw})0=dGM5k6fjUKS}`wOExdkmRA8O*~9B3m0iL+LzfQT~Y?r z6rpzWz(xjWS)nm8QZK7OxaTpGrzBc>Y0i4IO5@RJ!U*}zA^UVWXwXpGAd6(r%VDSX zNJLTO#1@rgtN&Bt1#OH}(*bwJ?s9qC#l^%j=$vR5tI!V5?_o^n>^nSP-|V$kF}t3O zA1JM35e7iGY6N@eCZz3w2*&nkuB4^>F z3k9MbP=^iucJt3PVY>gCNat5zY?EjU>p147>v5%m$- zT~RAFQA^-!BqQXod=&kVYWLMUWQFiBeA|cbNGn!v+1#$#OKV$JQ1&YB6BW-SxX$zB zqiK1Xqx@0lEZ3}CUPER;O@+>-osM|E;e^Ao_gF+$x(z2FcDH($iU{$WZt{Fs#jnb{ zh2=<8nzQGM1zBpJZmC1+>&!jaII&@Uuf3(ZL7=K2+i>Q-+Je;jczJ}3n+f$qsjy=G zSEZZ9FNBMSvkT#{zTy>cV9sZ!e(}K@M7~CXGtp(HNK%8wWV_pEh}DD+RrM8OO+Lxd zVB7&fl>JzAQh_QsbnRN4l&`*;w%?s5N6k_gL{HRSM)bg%Hax8 zA1v-~64-LwUKMj>ZcjTd9O^k|zjoq)PCLLq@eCEIu&k8;K>=5Z@i`>NX_NZ*3EK1V zerUlqOv&=eL$6q%y6exnO1uZenM@waP7>Ejp(squXd2S!vbc5mW08hCj}ZO!0QcTIMoG1FiuA{7KQ#lptorM4ehawyeDj>G|PttmJ_e3 zt}|GCruvaOvMHMookDa98O?;8Sk84*W-K*Srw|>ex?{xyruFuAuIj&1#Rc`{mq=ck z2o`V>!QQgawe(gSm$+Irlx&2F**v}(M;t@<$$5Vw@!ev35J=iI9!Ns`7&JzqkV_h~ z$Z;dT;o9Sg$`+8jyj1HVBk{kMq~Xr0sD}G?G??;Q?Y1^$BP?G$L)3Yn{`F8jHZpcn z^B^5it?Eh~EMyWuY%iNM8riFbqKBl{p7{xu>YvH>okm65c<=NS#QFoEn{Ij z9650@rva^{zqOVf-Cgfh$cFq_>C-fQv*pZ~$if?+#8^Lur8bJ2i@%I^nPye>UZ6uc zb2Q4ccQa!#XYYKF^<4*ii7=)Q3md8Dj>VKT`C=mnd_i@)!yefr$Jot`YjFrIW+uo7 z5B9R<{NiQnjVVD{C7_%8Z80SywwNmL#*C~sa-MImX;d>`2y0RQqi0Mk{v)j_uo{_86~qal}naZgxp zwi{Obl?S65G0^)UJhPcmodM!qz@113!SGY)RB)__tdy2+j9goc1xV=`bz_dAJ$!D5ZD$Sgi72sgJlZ%kiP-0IM9*n6m`@ zrXNXr|6Lu{HTbq{pc#*INp+zTw>05Fhu0GHJ+5$vdd;I#%SYLf*oRNYagu0InPAGwlg#7zjK zIHv%gVPkZJP~8Vpzu8--1Zge;`IPos>X8hR3y?xSP#@hQ%BHjoy_Dp2XEO`u_~PdE zdba9k^*GiZ4$FH+O{6YDE~uZ}fi6=AZjn;?XM}}J?WJ3HY^g`TBoQQz96&DEqK{YD z&6;$$60~ThZNC+`BG;r|Ow}K|?@P+Lo^0UFDrPr{UP>7)Kzq#=$UWfka%j_{>Mtj5 zwjV~vDdko7J8|Va(E?1#hsd2>hQ}V$8DnW7F(56Z&)$jW{3|$46Ecu%z(|i~Vq)Z7 z$x(k*i51Cpa~WMYaO)0*+!{{8A3P53h3TbCoEeVwFk72a`L~29lepYKp{Ca$-wW^$ zkn2d^YzzNMdbttBFcH;JTo0m64j#Xra>s5~KxQ^6Dmie`l7-ikkDy)daHscM?J;M7 zEAxE4mJOeo&Zq?i;3E3aN9a++%+%Bn-TcDrvsVINO5#{; zS^znaDo)JwCzQA*`X`1QXn7&}jwl-;4piPk5DIQYcr?Sx=!giJamx#{PZ{MjnyB-h zvhcEAjB~ZPoDKGBlukyOey{OO_m*%)n9fwbuv=0x5@Jd(V z`6JaYvEok8+4k)QCgU>D0sszn8Co^++*)Xm!M=!E7p5$p0yns(;NUhz?N8RH|JtQ>^p5Z7AR_oq=cNSC>)?sR-H zue!4~9nNvMQMUX#T0I1>0V#ZH+vIp$vq(^XCV|p7fZG;MYksLr<S-!hZua5^I(z zta|3_lp=lq51~P|H*3vjty~2Z`>-I2cu+3ygr!wgvt@eRxS$RSJMlQ}oWOQobu6B5 z+;cuw$u$|5ER7xjZm?!WC^7eaWgo;VAJ*__xc1&9;dmj?h|7J0lGDpa=6kczE+b#Y zfegKP!uhfoH2a&7p4oKC0MhyQQeWD>UmXjw7^Yz?-d7ft|3q97izY`d#r{mq7W(1Z z2hE)mDx=fUWmV(^+#n3B;c@+b7rl@rw6;RF+OoQtB0sq*B}}zL77$J^es))&?@1`> z<}sH_;{tf#ZnCV>%Y?WfhflB=f?k;Q|s6x*!HWu;N9Uw6S(!!uMJfLWZ#3L z5IVU8|qfZA37k(jEA5Gep^dr4G+qrnq_uMm$>9t-nzYzQEG=qAM_b|jgug7gVA z6EOkeH*aJM`(Sk!JzAY!Pm`n*taF{s@t6CPqR{F(f^%tC*(wS~(GcROs+Pcm^cPUO zJyf+Y_q1pu<6&B~H7BH=rY^KYvVcO^R0(4)qg>SeyD1ZvU6M{yD=99@AERKIgkB;i zf4Bb#`t-br4>;1zs)i7rEIqRr9cTS$?siD5s3gXX7||m{Yz2mGaN2k~>#qx2W{9hk z1Q7T1N}iE8ewjTRy8C+~FU)V>0i<_xzuYa{eX$XimVMZe2oLr)o`ksV?x(C1kR~Jr zLyoXSo&LBm?vQ%rCBiMmQ2I5Pi)1jxJpK7=2x#kFfuB4U5an$_m#Jz&%LPNwhCemU z!Yp3X#`kAQRi7(im6ZMUj~rg9lH#804SHl^aE@*whS)wGz0&3K%+#8rql^q<7T%kC zy5%q85&!1Gz;m?i4|w+%o&SLpwDD8*{%)oH+CG7PnXs1^2%l9~QuaD2e#x(yj`cfu zPhxMX?jn<+Nl0?w<>HHPfL=oNBdq6CUZ(MRWQ)hYzcpLfhDAcC)+uX0M`|R8Q0o3`M AegFUf literal 0 HcmV?d00001 diff --git a/R/ch2_files/figure-html/unnamed-chunk-15-1.png b/R/ch2_files/figure-html/unnamed-chunk-15-1.png new file mode 100644 index 0000000000000000000000000000000000000000..0dc24a702550fe367bee9968fd1d74fa3eb61c0d GIT binary patch literal 23317 zcmeHv4>(lo_WzhhCOU>nl0Snw5#gL7MP`PQIwdMngi;}$a7rnLX~LNkg`yN`Pk%%d zofId`Oyv|pGlhiAB!6c79cIR#J!WQq_vm!fJ@@%N-~0PL_xas>&+KP6kKVoB_g#Cf z_5N9(ckOk?eT&OCstZ*S2*fuVH>}%+KqwOsh#61NGvJcS-xl>F5K6i3n?0Q2{~{1} z2t**l&JJM*|E3}WOLTPbIywP5c)SiC{w3=K01Fo`T(M#WOed$3Ux9Xksdj-ScB$~) z22 z1Wt7yXom=d+YL+&Of3m4X$vfY;3nh^$gkwkd=BNGG2!q0C&=o40jL;-|&-y zG5CVoAgHS#w5vL~s~YYW>hJG| z`-ZBMp|(`0tptK8x(cAKYN!i-2=@%PEw2GVkU`egEwG|yg>Tq(6oJsE$p0y&bdMZB zAPf;3*ExEexH?Fa#^tnZ46{nq2({xWw_)r+&)7dNkexBfJ0Wl3|= zIz4uJ{MH9i-`{n5a`xfd4Rz~^8%Pmle9>k%An02DcIIQx+gO>EtXPQPIqvd_pJesJ!ef6#5g!ra;I zjH^i^9`O>QoT&EZf{lJ%Y2}$F8p!rt=iLOx!26~(WDVY{MB)W)u&c0VRy-kcM^{=! zwMnFnn<1*K*cj+?#yu`Li8NwmYk`Zc1U0_(bJ66XyVWKq&$|tUTqB?(g8t=Qhyr7z zuQ=L}6p*&&^528y&{z{jiiPU4?STsL`tP1=fNzwfy;khiZ#ff@^pt^hkIIQS$*bpc zd0U#`m!<9cLFVQ5!V5@(YK6I66Uc>6Ii6{DjrsE_y7VAwp;wl0sTdZ}?WplrOj#R- zA+#Ej3;-1q)uls30XFsoc>MyC*>;I}2wAp)7q*2+=xO!Ak;bepoj))oG>g$eH>?eq z%a{-p)h11lz{*a_HRuXG^cb#a7EiF+oN;IKj_6wMu|MdofV~XKpnsXL1{xBC5kURw z<|4nk-GI2kzapx8SNB2h?||#4EMnH|r~&x@wCbwCCUjx>Ci;pk@) zeV&&j&T2LRD3Z*`1axE3&q%llNefB1DRM}Xo#}t;vNX6X#1!jCPPCaUa~K`Uu4O)x z@B#X4uR5qZ=}H)>Od9XnBniS_EnKL|d)}OySn=e}QWlx$7pwlTIw(I&F1|WwBJxAC z75W$nIYu)Pf8rsKH zMLvLR|9RVAoR#esvM3p(s-_9t6f%(yqh=kX6IrN` z$;G1r-?eXG-B_`8Dtx-q_Q;KOp}-$BBVJ*wu`1Yut5nkOx7p&l%f8k{Y;ScyZslSD z|4HYjd4p~5WU_O3t9~Y%CS38YU+bEp)8K4nkzi7-KtgykBygl|tEY#$(IzFu`>Kjo zR)Y+gif;&t!6%(UWzMPozd(^f{EML&&iOYs@&gzT2s5K?#t-z&zxov>LN8MGWiTlFTkM zug%Dm8%z~w$ij?gLj#lsPkZ&?v75d5`rJ4I{(YpZ7`w%5a22&B<#xgGs~Ds-oHJz% zk2+5U;xh|df5M?fl`&lWWJg3(@|VVF|LV!(q?!oNxjP1tx;bd5?^f!Q0i_=RCfn$H zAfUEKm|# z`&V#&d?;osk#AGpaEl|+z z__G8xLa(sJKAsRwT?YQB$*ZgkDw0V)nqz4vW;0_R&ucQJ8H-H2six(TO?5)aS{N{4KTAn)VgWC3=f(enz#g_qC##xtlW zNxUh%h=zFCEN1nG?T-ovL3j2u?Nf5DH`L|6djLA_60Cl0&Z1NmF&43=H=L`<>x{0# z7=2v`nn@}vYePtDme$jvFFO#>)~o+`i%A^IiajxxyyLV+@R3gvS>54gJTjk-O2+}T zwdjW`FE23XlX21f;kW&<^9{&5rr7vHc%s^M*D3^Umka5!@q~iu;+c%0y0ICw$#})}JN<-G)6?ka!xIcb-?1%Gsq_Q{pcVePN7IuH+Gp>dy z(m|;!4a2H2{4_L-+?)4q%-+_OLLl!@6e%PjpDq(f%sTG| z;&&(BxLRxG4!AruXBAQ+qYVM#sVy_lfb)D-;)89A2+=_agt+O2XmXkQroMDz5=!+U z@)Mn+NFfP@O-v0L#ZdSQ426XcXXQq<{_Yrndw!`N<3ug2ykM78jU^kiwEl1^(2d7- zZp)nqE^=91{j`fWMD^J%yR$t}qG^is{bR=-Pw=ID+Qd6k%~LPC z{dzzcr;*ox|JIhJ0v9SeLV1pGX~~bV8pvb%ml~Hk%h2=4g@peA=JG9AL41zA9vl47 zgo%MRQ7YR>qngNib$Gd@*vcKeyoUsUjoD zs1EK2$+%S&(x+hBxOy0a_!OLAw{uqENrIfpAWgX|R)(wiN$zD`R2EOLM;>t-CL3kv}+A zyMb2hM0JEk9&@5o?i;JBiCUt)!rHaVBy5`bBfrMn!j}>}BwqfiZ=LTQ;(?gfy4Z?z zukLs84YNc~JHp2!{beL{`jI<&Zn`0{aIq1YF4kcNK{9}2|6bZW*vt0nuSme0CJN5P z-F3@SjSNXvotk2JJLm~`NM_FO&U@#qFBGQD0hu<}Q&j zui?Q_wHUTU>pI$c5p3mH_A0qI-HNpF;NR5<*62!e)3fe9I9KKG_Zf;I^q(-k6*J?1 z<+QC(>z~wme3`rOktT1ckqtIl4HfmnAKL&Q+r7jX`8k{Zxd#hw_3R5H6WnHfp3BBK z2=cW#+l0TC5~#WHpRl=j!erPfnC1@n&c~3o-RbipF13}@G!h3aG~iDDfb3W@T{%q% zZfrhUl>T{N5Da}Ir}>%@^h0Q-oF+4cri^s>_VZSwl{7=nY<(3Q3A6Hf7ct0Cf@u`& z{;#E5uE~3F)^@?EJfEE}T=!^&9zNU}pH_q^BDg@7%Vx@TIjs6O1sxZvMoh40xNlB> zZutLMNl(hYwyC#jhgEIVLqd<-)CiuDU{SyLE6bpiRG4n!&T@l~|{J8cTMoe(A|eg&m~+1Y;*>>i5&^^n;=! zc$Qa)ZfXrx7=wJtR~W-zz!;7t6Yw$;3BqUuUvt%!pQ*Q#`|`WBBqwUFU*^VX1R}IZ#pSSU zxW3p;(v$+nLaCvxYi`TY0E#0OEm{~7`eqTU$oH~v+s!b^t8R!U2|`7E%(;Ssv7MPP zUUn$&@kR>F-^-lUMb_d@W+}hpbNGQ5UL^I$>kY9b8pwL|SM-3runNFW_6nQPqF!m` zfta4GW~}(d$RbL)zcaN425c$~-BD5B*x2^Y=V3T&CYze&n9CsM6;Kg*V)CXo_GH9w zle*jtY?NpI6!H+g0F_86y56%y9~mQ?FDtKdBU{1|MHB3;X>NQ5kp>RXDl?cV*eIC^ zvR>^gW|)lQV+|Spu?%bO$AV!D2B3+BNnY5KQBdDSZd?Y|iMnw*Lz+BHG6xYgqAu&? ztcjM{iOLLi)9Q#3-@eg>RLM)G>&Jzv9mcWh%T4j$5Y_1wCdmro`_hiV@RK-=%Iv=w zISQ2JcS8?GX1>|2U@Ufbw8ItKAR4P^# zy{459Hh<6zwu5oB?_hY*Z*9G+9ZK9u5(%LiGZv-jr1T7-!SO4#Gl6VrSJ7PwO483z zh0ZmL=aK{CrkUSbDi&golwXeREA{8Hv^fwse38E^YV5=Cj>)wf{$4G#JjO(o3q>}_ z@snhAyBX_~%7izcJEAf*U ze%q0>6Xp;%19D9%wvFw6k&!+Xbz#6MKcOEr+JD8eK-zJu`&9juzx9RL-wjzw;(iWM zII%<4lyM!7$8hhquWG*PLdMw{vdpH9hy^I|2x-D6$f}QP(?l=1G-KtIn>UR~KQjG3 zx4ZcxBp!cNBF#Ae4@fM@elcT0ak->oZ?C&x-I7LO&l)I!VWAoab!8j}%dk-+3U z`!{fK6JEBah~QQR?~bMoi8(x`bg%Gw3bbc5w^K9NXqrmbk^Q79=b)%G3(erzugd8Y zn1x~Dc-Z>kh?vhq_lz;C){Ba6BpqBbP4&jAqRyhLF&{B9ffWv#OPa`Nwi%9%UA;#* z<(PiqL{nKTVJvBGd{X=R&k|oZpVw3btCbD!2fqk!?k=jfs zB@(tfeKEZovqV>|jGdR&FP`=Wu(6JWNz(?c>@_?Gva*oUMo){Ao!{IrGP`>gBwEhS zT%GQ_V_n{iR1fq+a^C&rJ#mDv!_M)UTdB5;^JhwjwWdza*v~N257m-r2`*pZmX6dp zQ>ScS&>Nk3yh9At6!=@EFVM?!vnd>}Zybhpr-Nc=RYi~RXW|J-U(*Kh_1WICWowZ4 zl)ivUHF*RkApa7|fD;Yc&4a&^`U1njvgUsJ7OJWlKtEhCO~{={o5mwgdcK_5M}%wC zZ#9CW_ur~H$0ri@QSZaBv-~W6|M8Af1Y5_f+a{=6*+adl*yYI!$(f<49XhE88eYf) zCz9$c*TEX<%+t*4ovCw8Y1hibdh#>L>H#N|w~~VVzgIHu2-UWSKgq)$jEmJYgTLE< zwUxUP#ulNO%GCR#dK9_8xcuPj@2U}q1rm8)fN~A;%(XA>7`f+Mx^p=UuI|J9s`^5t zXULUAaC&t`6@|nU2BR1+is|CtaJD?E6XuR=jnT;+d;Fet+urp`G=2FN3vdbVjzCp3 z&;1>T-zg8Gbnekkt3ZD9^V#j4T6x=QJ?d;t5efIWtK>(h=UWoc)(e(z`G#!vX!CPo z9Mb(=RPtJRl;#!RUkGtVosAlbDhi1y3`Q|t6w}3DdA5w`BVH)~&YPNLXk?h86`pW* z27&s6#rE$xA4;6|+FNwvueu%4Hf9Z`j#&D@D@Ts^`h)bRhZCM%LvNE+f{P=KknQR^ z{L=)75S<)wW~r8HwDATI!%cgifR3==U!jH^%{!3Zqx*h`>A)Go>8+s~Z(iD(85Zty z{l3ZRbSNBG12j&dy1lye>ZWlhN8w~w91ZbOghHMUFT0)9=w-3j>#Ck5|#+Z znyJnkTbC-pzA|~NrpY^AeL@@6>N5?V+W3!2cFD8z1W#q>c}CI5o0;ICc}qeOZX9w# zmFX{ME0d4E{gk5T#;_48-*K-SYAMtK8?OdAlyWxGk(xdFVYs^!NGZGvieVm=moLwK zU4Iq71xSDR&HTPjc!=@A)`gY)kocR4>fd_`MM7; z(Fi%RA^!w<+dSv?3k&D)lK9?H^%Or3zP(1TMfE`=zT5I8lvl;mbNBodt(-YNEAvw} z0vJSsGXkL_!ZhHdMW6mNm#&KMWjoXvP(|Q?J`Ah5Um}*oV0qeM5}4JTnA5l6?{<;* zU|dR`ohKexml?q~2*gawvg0F9FjVPNkD)Vq)*b|?@=tCF<}d&!Plwc-ac0fQZZ9hb zdL;2Rcnd21-nA?eQ>-#AebHeCMpQGY{eZ}w2oU~2Es8Y-=UU6Z(G6Dq#Lf~pkI%;O zp}k`WdBUVWKI3`N6-OAKsVMkQlt-r}Ye?LfdzyNGearPz^9hSmNh(xL-cEExsXIZ9 zs#(pL!9qtYLzVfMQk7ZgE{;+#%5FZg-C`aK8H^I}5!Oh3HS*AW)nFxSBp8WUNKQ^5 zM5-x2g#VJ*BhC@3oT%jqNN@Nrnf|Hu)O|**b|)o^Q|k>Ob;2UnuW#fDBlErgnS_z6 zVI!ADQ!4GTmmlYj;}6ZCL;aLW-$OU~q+X=h3)@1ijUw_7&m9%XI(7o!?S!bYb4eZ2 zX2#y=;1bnZ%BhuF;F_XY;4KYa6YX#_{jQ2i8QQ^)5|nqJhz{Oak@XBxjC!bD0KuKdKG$!pA@IuOzL%q=ctO z#?$w=KkEGWE>u*_?mSY%7JrbmKnHe*YZ7*O(#2Ldth1ohm@;MR3Z$nIe`sp+LhO5r82(FG~dNA{K(ITm1|-Bso-K_Hkvvr2W#`Q$?|3 z0c|Oi%XYN)T9cEdLy2{iQv=Sp8QJTFHHPqM0wZt|S5o`H@=38u57smqj0qS583X$t zH`QifFEKdhv@&2dEEOEIbMArFpi8>&@jV@ZSvkA+X)SYe7F4p5ZvI=}p2@dt6qIIb?peN4&Yxe(`0rsEI8Jj@3b7Qp9mKobIfx*ipEpGmjk(+Sz z^T5DB7&P|Y#d)wm!_@PkWd(SKQ6{0NrOEn05ITC?6F*v2jMaGrI8i;C#H}s5jH4ho zk{SCk#mYi_25*OlCP)tUbiJIs)G3OmE#2l!VG85Oow}ROR{e*pWaJwXHS#vk{=TCC zlk=1`-q&sF>Ez17#}?ff+ks9u^Qjsih6w=x4kb6=fCtT? zgJU;ujCp){@;%E4~-cdm`fUs^P&ffv>BtNmRjP171+6t3Sf@f z#ZO_Lg^#j0B@tlEW+uZSeTtuB{U049q*2g|p3%FLh@GqD1-HN3-+r>j7U&mrmwxY? zm+nRN@PL~Smwp&{jxq49SP;_*`28Yu@$WcF_1GGs5+0|VY26N& z9-#?lF;k#Q(n;_f70l{Qgnkx;S~af`CgG?v^_D3u#ABNdVqMOp9a zF1r~aNhsTlJ!UL3W9E9#ixTy`-}gPs{XX~id!PAD^V2ogb)Ls|9>;ke|Kpeli@l}` zg_jHS@bE0$xnt{o9v*%y4-en(C_ZrI)icF@9vcQdmnGk140ckr2M7FBL#Wn~YB#(+1*9=r$ydjip(P;5^G?`EfII-GQQ zoWKN5F-|dgPI)a(c@P){9s_CGd)~PUS3RIOH2zyw3jB@V~7L{kqDk{CN?)`x|?OXyJtqZ zXO?$mc0qYgJb6yKc`@Ma1V047TJl=J8_I*AVgja^XkSbu6c>Z1o6Doj%A?%NGu_L} z!P8JV1T_=wn~Mp}#l+@f@I4qFd^Wel=(glJwdBRLfU)4gzzb@Dpsq~!uJWj^axg8_ z-`@}BhRUO$mKdld4+3{|WkOx$P#5?T%nZhcpMW4JzJY24R44Sy4l6Gn9+`0XA8&N` zh$9b=9M8_JMwY&}28*E(hbF6@CV|VpAKIN5wtj_Mlgp+8&EMX)4J^{Fkjp-C0V%y` znX;4S!~J09{Et;g$Sk4n3r-E#;7$5{;@yzxDt{jvMABMG*i9eg`wDx zFx(#|m=C>Y~S^(|PG))AViJ|i`$ zO~9D+!Wh$$f*xdS7Dp_UWJ!o|T+;Fh;x3Q=w4rHEZ93dzqwV;~M(eUNB6IujJF&LF z=dEiRuh4P3gjp?idWN`DnHw9C15`R4hwIccGtabzIdFF(L1JzCwp~(OH+m1d4CQ_M zy$Fjndb2YQmp_)#xbqpV&1#IEfoU;ca~Cj?zGfmC!?}_>QF?Z&x4%>aQ-r^a-IilR zDJ;_n8gcVH0OcpU+#aL1WjSJq6FFh<97jjnvbxo$KGpP#IZKkUMNjbc`~^0Ya629D z+vd@Gjpj^bzw^TevJG3C1q-_%{mbs*ARI?^4@j;395cA&H<7Tuo!Kz#HU)Kf zz9*LlKjbb&oVmW7Q{>ZMZ`iiI51!5C+{nx7e2;aNX5-N3!|%xYtTT#~d(w6mkfYS+ zKL(un19re_-v(7Viw&=}ZQg6hXG99Gm<+bn_q%TX2d+l|*XxszY+nrPyV(D1e&Ev8 z`B06No48B;Wet}R+oEVek|DqDL!ubO!F%>k-i2~{bq?)@2hEgnx;Z$CvRuDZxM1vB ztn;tnzC2=XZt2+Q$`T-MS_#*0q2=mS5&yE9PV$OX7A>v~bc3!=n>(JGCu zR@o6z-uExBp|zewe$Z9arm&+*vzHQ*i+x?!Z(TXQ_&LdhXm$uO5rQS#PvB|w6}vtK ziw14B68b2HFo>BTMd;B!Sl4V4ylVjp;n^fR#t;;(fvkQaLTE42?+*_qNI`{QE z(fz%GgzX_+>s$xMjHpJ*(IXF<^Uzzv+kOvmsU&XKwtftVzm2;b0O*x6g@yz|Ivw1~7(Zif$cix&ePY?_PwoFi4qt(UJ zF|#y;d)$c@nD$PHte-ug9OZAgvH$rSqooLvMm<*BE=;>j!n?U{xh>Q~bXpClCv#mX zeRZJMwEbgAbG>td_UA;tzrk*iQ2WYh|1Rz_*Gc!7P4-}6w@JXd&h`5qFSP}y-8}N> zTwm?CxI|| z6CZ*NUxqBmUHVxyX*xj6a4Jp{55fB6DIB}I@w-^W5Hj}SwAw?Vncj0u#)xFH0MXif z>6aU|a|Dj^{?&-2XD#vYt@L;82ogj$puC;cULMp9`7Vz=eJ>T#X^a8j4B(J;QcY1# z)9NzEg7U|jzVQ7UUn)`_*zNl&Z`o<(e*vREKNXG5C*Mo|Hxe#KkryBgx&4);e0ri@ zo>Bm|B6DQV`LCnB1-JJ+Wf%rMmv%+ zy9ewvCQ-%AopKAKAGR|>+KDyp9&Mr6rSh{bS%F|!s%_o%bh!9gZ()_SQ+{a#_VwJa zlWT|c3w+0qpQol)StnP!L!V!F-0R=Jjdba||Bk>Clhs;6NHw=aYcZ)Y? zY)>Qu+H#8Rc1b|rOikkZeFw$Cec@gQ+iVPbjtMg=77+YF_5f@XcHi49V`)OV=teZF zyO4HD2?4kkCA58?CEvS&vKYkaB9BV#8V8QG=K|J8)HmUf0`@7pSKP%$ zr5U);1U^Ko&ZkpHBX}Bz(o9IO&`{nkq9||be+K>Q$TYe{B$C8;r2qwIS`s#aUBj%l zSn6woMYZ}A(&5zDJFxwjwF6q=Ba|*BJ(2{c9<0D-VAdE?hhHktu&L_7aLUIC-c@|F zh<|pX)9WaM%LMfi3Q8NI3KEwI6MMHC$aHPdW=gn7IB*wsF97boOmR8}a0FwwQ3%^@ zkYgaZa|9{l(y+|}&ilwZ$UfRQ z8!hU5PDpr@_DLDRS;v4Fzu#*~--3o|d)VJM8I?CD+RQP;y}iYdCumky<8t&1Nk%|e z`q=Tu8E%xpfEGcL*iYmn36>jfzOk?%$b-$pNcpC>4z-{;N*d3Qp-f1 z7#2ONeS>oSp^VG_EUEuI z^wnhk3_+yr`4;yD+>PN-U9!8i)@S2 z4Jb>5?#D=-PJWi}_!}10IwDbA1u-Ukcl#Brk{lUfkW^ee#dJ7R)2c0Rf$Up4GguTq ze7M!;^j37MCF{BSJ0_iJ^KDiqB`)dYDOiD$arzP;Z_lGGbw9b6e-}z#dsQmZpP6x2 zM%%{e)5tG%AvDjJuEqVmB$2VXS-cuqLZ7=u1Xn_ZB0FnQ!&5gzj> zUHNH6ub6kM&K~5v)TOx>VUcn9m46^$CZZKuAd0gxu)y@>y?BqB+D9M@(C1+(4y4`jx|;qu-`440u@+t&WJTdxddsi-IH zKQY32n_g2|Sb zl#XJCAEKj5I=d#0!7=N#DEn;y5rga1mK5HD;d{Q;k8VqEPqF*7iE>f;Ab@i`M=4H8 z$2ry7HtQxU6=V9-UqT~B+frk{OM;CrH{C10|8HM`V*eeUNfAF6q~giF6P7?EH?9=fZdDW&A1IJ>fK=7wB|iN~E08*lIsh^6leO2t zAc1r}d5Tz4knT+jO&X1-b#yRZN(2OMwZ!$n`0Tn5=C~x;1q-@)d6TQtze26$}`e*uXi)v86Lb zLQJ5y65m=`kM$uKj7?^@PU)!xin*7EQH*WHKh@mT`kQ>wIL>qsBJ zcBm*;aLY7EMGg${`8?50iA#)SmzCnijGhoQV*Q{GaTUjkr-CkGTbzy=^&hsvy{I56 zg!NNf8|`$9x;ljrh}K$8r$!Av;9*J3FSPyz?RJ5E6B~D1DNr&rb4U~TGbIL?{yS&@ z7d4SP)Qpq38S4-R0VD5@|GH&B`K(d6Vd4YikRT!X^$e+?0pAg%w!VRIon9Z#>1)dNXpoo;^~Gkz&f)lo7qS{rotP^=YAUz=XhXrb_RV>LImjtoaE56T=Q#* zzeBv)ggz4(SDnEOBCzJp9vXN^6};a^{gySls6nhIme`ekzHzP^qKAri zDBVC71R5;?8!2PQ>sY(Mm|pJ@e--o3GV@VmRRcs&Q6MBk(4DjA(?taN=M)Lezc&05 zlWcPrqVCk3-XYE=lqwAcS?}JMBm0EDCzK}RcIb!s@Xlq>0KYyUsHy!WNLtO=A2J*j z$Pa^7)U!B>$Ugq>Vyr9?V>G{djv2;z6R@0VjCooXV(mN7|11Rkzs83D9Tfo^S5cy& z($dM@`G`TcoiaP^>*Oo~GLphw`&u_8V-0R3s8NVh(U7m_NIld?qtU3`C4~DAo{Yp; zV7A4i6(0gf+u;6<{47o?k(n47=^?W&XHpq?8e_0?M>7WSld&3Tjxb`W)u~ST6x<~_^MEXrG3mqI9wCOcmzTO0D*|IP)&3fzclq%R6QX)W z#JOx4R^ZOYqqUB+iv+hLQ8O`+9U)5kP;n3=JBMQ>Xy8bCIxaz( zqJfs-40ybo6q$s%zhP-55Kk5*C{PT(iU$obM-S}5Oem+yd;qhjTvM%*qc?-YbAceN zOD7@ko;)1jVypC{htKMOsUey38iJn%ef31JB2yw7J?A#A3U-YRd#lrZWw z=qPUu2SYvNCF}$iHj6z3?pwPtch;mvq+w;l-;f>1X>-t8TPIREjg?kAnY^#je4G*%{7BAtI$T`)e9 z+kbKo8hT|nh0exx;8~GU%&O7hgYG{nZ5m`RCh~QgtrD4~e0tV);#uxUY32xe>*!M> zQ|zoB;PQe>Ztk0(K%%ZQAyF4*trZ6Omk2SK#mx%YLBp@j+HKl23pr-UgmYi@F%9Ei z1tHl-)IeIdQBd!4ycKJ>-jv;JI$e+x6(F|z=QMQD0}e-PlhM^}B}dwx zuzJ0IoD*yhMh32ok@Mf>>zC%^y8Qgl#lBjoiz`QXufk_cEb`T?;3W8gQUKvQi> zZY<4-V&Y5eFK1o8uw&=t)S=ZOqB={4<8Pzy2HyuDP-NL1)b$0gx12`y$sb^(T2fR9 z<85B}mu0`5B?A;mKdhZkiCt&sHjeWZ#`ltATR0P+Y|c<5X4lQM3NC@|L+40Z=1-Ik z+e{7*G1Ah0`eIy%lD`?Jeio-2Pz;&w*re^UQ*E(v&u-(H<>Ezpd*gWNJr<&syZcVJ zoe%B_z4m#Q93=we|6j=gf8Z?I3Fpzq{f9k1qlf9rh?)nEnqZ5y9$qf-uY3u%`i0|X z_L!UZM4L3(k)P~vIYY|2yp-$I> zV6pOCI96uu<^WJxcjMzBaoSdkL=cZU)Af*j#~(L?Q)Wh2UNBZU_ygkrQrfgt-a;_4 zrcDfCrj)-FsVmWN4+OX^eWC>2BS7flE~?XPlQzR{cApQb;e~xJC{#R9afY9;7x}a| z4W$`XU_ug=Oe{tt6L$SoNS>4gfJZVP@W0xWFjx+%60|QXfw$g9QbQ3wsK3xx6O8c_ z1};7Ny^uyLmLpyucwL3qbTA zTvVNVmM5Ni0d{0IMyQ7KLOoVG7plFmBrxhjIppa=B>llkY>y5wmrK~g;)tg-GV87GiO*SxWMe&J==mZ$ETv=|eK$|b4E%kRs|5@Z)>k_o0HeMC3lP?(O=%HM_5 z{h8yCN7yTTv?nRIU6*et-fCnrQLBSM1o1Wt60is5|5V!lA|m|z$xwNOt%(adAn$c! z#-6l#M|XmvR58ID4|+$YOKwyE7N}ZqPojSJ5-soHTZ(d&s}{FGPH0QIgIRPqT>WC) z9JbA(Zqt?DY;TiN0;nr_2~nYoz;b_Oq~z+aKV3Cb382PH4^REUSj4}uRga27d9S)o z6NL4uX~W#UV~kkh)h2%(;B!}w2yOc|)31f%gnK!yrA%RW6$gic(bm{LOc1rm1g2>D z<3*S5#i_W^+H_3CedG~lj)i#o(vKG9<=)+e%8htdtzWps`4bXa_DW04H1<&_#a>Zz zL&nI2%JWc<+Ow3HtG$&z=Jz2+5?wT9;H84gAG=f%zS3{>5ngtK+?vC`n8+*E-xyA| zgnIR;GBBT%UvF4weYLINXCe|Vsx6$v>`xbsx8GB1H^|`D`_$@%<^af5LM_F`KO*?z zP?8tYQ%Zqina9?)d$BO=@}9#b0sA>=!?%1;jsUAvJY-z=O)4GgTS*yi6CNeOD}<%v z9|lg`VVSq<42#3k+x{T*cCV7~@&cb)i9c+XS(I#;ycr$ z&f9tF+-QvJx3Uc-4`b4)^74TXuJJ%d|Lxs#syG_VP+AM6<81=gc>!Y3t>lJCKVg@? z?pPHUQq4!Dst{cI z;m4|vtvaml^N|4;J&p*wuXS+Pj?LTSW1B;1r~+*wDVF!7ROCZH##~-R>rT6Q{-byN zVA`(%_LJ!&Thhn0B_mCw`sP-ICm0|aTS<#JiWVfW&4#yJ@X>d+9)_<-1W)R(Juy>9 z{OVfY0>B6XC;p?$_qevxcR4 z)w!v}zZXDfM%3IXkCVDTVNh%=(co6q=+Nkko};8Dk45eCC_Tl!!Uz>VdolzoB!6c; z>bkhG@IU`&{ZW$hR<*x$C(eI^4;94wL}B8lCeXOCcOxUtB_kaWR5{{^`%FGcJa%Qv zaM>}6{xI~x6Iu;APN;X=C->IZ-;aY)f<$Q=6rvsQa4TtX*-=V!b3p!0?P5k@mU-6R zmt*w7#&PEL$iWb7SvPkit<-azdpHWy3I#FS)+w)GI8EfHl9<`g43bW*K8m5Yd(aaN zrwYh8(8V*{dX(D-T5?L(Q46&=)!SBU7Z7du2M70P)v=zJZl;1%zRbXrwbSi54~B}# z*>+(&F?@d1$?h>Sc?=4RZ6~Vp>)t2%9M-PEzxMk`g7f#6d#U&1&Y6!+KShH?s^Tgn z`Q5bw;^XW-digX1Y{$XJe<|(PU|-}1{gW)_7qx!dw!-et4KocknURN2lmxl%bI*Z_ z9ZNgA@~QEM2~jGvzD*X&OZof3Ud@YERa3!fObo6{`&{8H$F4k2r}b24V#}5=J~zcB zPUfoTr5zwdfvm*Q?1`iz;dgK^%D&bdx>(ySjgXIAZNpr~!`LCI>0Y2V_Eg_V&Ao=G zt33+-X^wH=R$p8PgvER@NMZjWtLzR5(GfA*P1 zM_M`5Qh^Tv`uAnRIhWO3IA3Ue8Mpm!k9nOR&!?xMN?8kS`C8*m?A-U}u-obCMR8)s z*LFT4?&H_N$9BLl&*K#??Pk|tVfl|Ob7W%A&cHm+U$B3L;h<1#i}Qd$0T-h{gbm^F zFtiR6c^!1>I16XzrAKZVa6V?FALfy~k5lAz%1*fuE~KH2o^;c|JNKV-E7Zgv8qLTm z&9p6H(pHPIL1Ry0Sy4p87DcvSZ=|y`KA@_C4{XSi0LW7kc-N`!)9-N=Mfkxg2X(x& zzn}ZFOMnK+C%CvKs(=A#pm98g$&BtTV6Hk2V}adjE%f%}(#hAaF=9bUpV@XvKAd>R zrZ~hHV~s^NLgpX^dOm4Lu{$@q!2%#YjpTf&ab)>;49p0wMDX6O|1|IX8=80KXHG48 z)Ade@r-#kNgs;6a;xyzd&5bj~1~VNx;)tZu(!emNv%VIb8zue|#;eDSwJ3 zwkNI|{V?HwG-$mEY4jT!@?4VEJ5ZY%>1v)zkiLAV)}?9FpM{OCrz%mT z&e9(vnlGk9bw;D77T^lwP(Dc{@PTpQQ9QCQr=7TJJ zvSn|9nlZc+4MGuw;Y~4<2@;}w+ekQ&))A4nI8mO9otRQuWd7L(;8W!wvAGOv%t3*5 zlMiQ|K4J`PI~75;7rsp+*@nIO-Wb~y)gZE}J$gYXHcY+=QS3YZ%MiH`Z6jxa2c&9( z0;r3DA`LOSnrtMlff}bi(9pE(`|7v~@~Z2p|Qv;bHm`#Va)8LGI$b9Gl$SeJO25CoZ$`8hlrChoTGBHPg z`)DOkxtNykcX$NnK>Bm9862&=%fqwS7XDp;e{jCni_?pD0i%5S^dffWzROwH*S8Wh zHrRqz{cS7KQM*9*)+V`=YM3sGbiQ`S^wF%bSLC~h5KzRu((#fbZduIt+8VmFjfYhvEk)D>zp;x2c4F}w2NGxN_5hu`NNRBty4Y6UoMk9J-1K#=&ZtU|u$uKFXCc_dKhbDJ z`uoT$x`ok?uNg8dz}1W4@S6*Z{bFeX+dw5ZFf!c*AUw>}9JECymJ}8_o@Xbbv@(|h zo3z6gtHGEU`1Ogu-N3T6l>~qy*nGp~LCp9WjaXA`Bms)aft88^-~6?twck3q-5N8h zUtF-$Cqx0%PyDLlSWM-HMsMiu4%ZK(u9@02qh#U{`jWQQlp0f#`Cj*l_K?FLXE{n)p+YIslf|pL zTOjYZ!b|8?%t^wKpA@%HkF)04T*ly_Q`Tgd>-`maxV>Tt;WS98OVHMXc-exFcrw*r z8-2b_$LEkHVw2c15Hz->CX4pj2+c4)^y89gG}kcn(tVh~_U2l}KQ`Q=&I?uYiW?CM+YTg(3Zpw4u5T8P27M-;zjwpw z%rSMlBD5^*6!FK72ur8E~>dV+Nqv9$l0JE)T!A&j>w~mHm%@%Jbbe^m1SB9^H(-;Rs|?z)o#o5;doA1MVET%V00LPj=m4h*6@HT|_J z+*G`x_oXjrH-UekVc^9;t!YN$$1{`&c(v{t8%_s}kqVUE;Lrq`R?#kor9SM$h(ypW zLU-&p+3tkA-dDOG*bK)WgmxRF*~kx?S!g^k_K?9<14T^D8Uip@`~66n1@M7soJ7Ln zKC}x~UnCp}`E?{|%#blUBTYFj+jr<$?{q0*;mIO5G1yI*#q_E>3A=RMAT95F`fJ<= z7d{>EQx2gtP@SlOdHSUDUR9T&#&1Jj7gfpUM3FY>bAP(#)Hur0CuA2R8cP@lKa~ZF zOW@zCnJqyqDiX1qKIMJuWHE34+c*YV10P{I|IP?dHc@Rm%=yfYN_5ap-wL6YxPYo1 zxLV{=$)2v}r`fjt{yBjZ=AMz3-@ay=zE**<4JpoI)SRNiz(-(rHkSCu{KpgUib3Zu zaa}Ty2?N+Z3NoB$Ip0$Zg0jp-8o69D;gdM_Bx&3fTwE7|ePz6OCBkJv0~ZA@I*Pj- zaS1lzxkC7W=5<-{WC3EKh}kbF(gq8*BDi?dh;$-FNR(Gg;4~gd+Cb4nX|2_IA%Ecw zb}*VpOW>#g;bPe8ElA3;bdChLSXBddK}-alSIuN9%~MeAT%_cR~IQx`zmP*{Hu8$4oHbI+iG<&Qd z*Tz(^Qb@NcWL-g;sWHf3=oLb--o3YowQeGxDh9@q~yHm+4+Ckt;Y zkDq)11>mSqoaeqo&4ZXFmXfUJx}_EDed07Oq;gg>Qd!_0p~iG<{Pid{ljx^o!^t0N zQa)AQ(Ug(}jiv1I%dxGF7J0YV>0V!WaHTP(*d$&v2hC5gO=g{}?%8p{hZybEPV`oa>er_nMeEGB5_c%-7+V=vv5m9ue7aiwrh7>*U6L;M91bd0s*_qUbc*I|r=+4=g{j-WFp zk4VS+hU|~oz{oW-Z;HNv6=~nLR(PiA!xLeVniV)?)?ri`$4}%sq_VM&|@DnHIx~vmX$LdZc5+P6~TI}!b&Cr0l9yxEb2i_wsK7bwzJ(~=Fz7yZy z(E%A8rBb;)6zA<7NW!9Q=DRv&uJ;I?ZHl35i$vl^vo+KWx$V(6#Y~0bSD~)^)yR|h9bj^@%=H>t;T?pQf3_>mSLTUwmupdb!u$H!uW$AxEzlOhsdRYgSmUE zzUZvhv=LYFyyXGPRx{OXY=bVJdbnSfa4iE2-8n_0jfzG0h;7G=*pXi|W3xw=tHi6L zu5YP5mKawsHIf;JUjV6v8z?VY130gJDy5I%ib2gCA*9l3L8A(9K(tp0`EYoQ32?<_ z%t_axPdi1Wk-Jt>%d$tWDxEC{QqaaQmk%$y8UpUfW^(H!i1Etdpdr$ho|>9UWcQm8 hkr6WgO3U~SLLXw3bK2Uvi+R9n=eE6D9~vJI{x5RyO8)== literal 0 HcmV?d00001 diff --git a/R/ch2_files/figure-html/unnamed-chunk-17-1.png b/R/ch2_files/figure-html/unnamed-chunk-17-1.png new file mode 100644 index 0000000000000000000000000000000000000000..66a3b696154666c89ef55241e39660b5cbe84600 GIT binary patch literal 13766 zcmeHO3sh5Ax+Vccw3;GTd=%2E6-O&nQIQ}yu|7}{qDAq6kj~Wxd=afdAR!Nntq+u- zRH;Ttv?{t%z!3xugp4u>h>$=;3J4L2lJE+c6Ug(Ny94UzJno$}ch;TWyEyB>g0uhq z@4f%M|9^k`JO4SpJ|uA5n5kpz?Ci#^S-s*bJ3B{`ot^z3N85uZrFUj@+1X(htzWls zCHU9Qj$mg;wIdMh2;g_B9ksy6#|J#JJ+NI=0u|h;1Zn{x72M6iwksw$I3+kHCO8KC z76qqNY~8w*I;4e4u%m)H)KqF}0kxo+T7Uvko1pDViAfQ~q*TO+R4Jf-47kAqQHrP{ z1w5$$H=0VYOQjN0hw7&m6r>h3r#7Ram|#&%j3^~WRG|{7&;qJm0hLgY3T~=R#CA0o zG=m#0K+%en;EI%(3QJZtSeZWrk3`^AhUnf5tD(C~=4& zb%+9?cmm5=%&pnXWB1Wb6X=+XTo3Cr4g8rJOQ8I3DwHO3JvfXz+gKKri7&ttEnkw- zs}vfz=XooJWsHt37=((>)tAr3L@Xd@DGHOBPH?ooud*_E+TBF)1i2L+9;gx$%5V+2 z0Td#muT(^vv>tO+p^RanTw(<4j>P^vS#0oq`o3-0R#6TOSXMQS-fb5(wt_>v3(8 zv1D7th*5B?w;%^Xy@bP>SPrnU%@mBCBcz*}v$gK>!?OEOgrrqZBTsE}iD1#0)*c|K z*mFS1jZCz5@N?}yk{8tu&l2eR;u6=&qCT6h9us2gmFa6Wv(0fMNdp&d2Ltx>_Ok9? z$Cu%q)e-99S!O$70uuT)yC4X8zJjC;8=hUbXta9X;`=kiCiQ@++40AatcJ_nnoWN_ z_2MMNyn_}37EG4gWo}HpO%#`m6>oA|PskvCK1LlDLDJAoH)jjOV}XG+r6WQkCircx zg6Gq*gbnu{zyeOc%q?)8C8QH16CLw2zOb#^tFwhYN1SJ8gm|yS?DJd))->aHW1{_k zZ}Y~W4WwpgSFqkAPhguue&W_?;IAgi4-Kn&ejU@(qITw=j-ie{zgftyUPgH;dq8Jg z@DgtNmpAq=?DvSOe|(NdZ1r!p)gVsYpLJAJUrzRtYINi>2qCgGyD_USHbay##;?LvmW0o8TAX zM0o%_4$5vV%3ppts?+Rb+n;ZDR0ZPLhFLe1ci||9{7|sfv0j4xmL*QeFv7(b(g$9h z291xMok2VZHf4|Ok|LxhZ<_Wd1SQ5>6{~Fx9~&J#SU3K7<_)mPx0mzdT4<_QZb$j~ znY}I5F;4im5~+rv`b1x=7&?W7jy0FHRUi}yhFczlkB#i*Bx2N&tp zF6WbaBLF~qX~Ptzz@?BBCKhvBBZs@j8U?EwJ578BzIKI+i@f)$`-Ff{rN6K&s?F&_ zllj=J6UVrRyn9mB=fNl>29wN};>57TD>hSRX+Kx_ccihch9PL>sn>bv%~w z>bXL(g($xk*p_PK0bZAuqDWUCgU22mn$6dnY)gz zkUe(Hf7@d*H|*_@+~jknW1A#HQ-$5Oas{a<{m^Q7T?9$=*4$&GKXSqJL^gd|>l2H~ z9#Q^!6^@u?WVO7G3;ze4C~$nVb`@`Q%cB_oT#_$8srMsWs2y?hk?8k&8ynda{vYp^ z(g+g8s+F3Lb5pJkW2^=)Vv<@cDpeJSvwweIy>x>7z-yE;SuSu-e1Rv2u<82?@|3P} zm)8Z8IP zv_A5N2nJIniNp)T2`(1L7c&fHW#O3s-<4H1^1T8#y+uEhFxGmelXB{4H2_ev07YeG z=nVaxMV?*08E6>E{CW@*<+`{wP66_v`V{Z*Yu;)xEx{PAd#F?E`40KZhv8cYCcs#G zuR%t%vcqbo3BHG#iXSBwIBU*Ap9z_2aE6s_SI!ekw{tLR4YMz|gtH$Z!1@$Ctu>az zHoQy{b`-&p)*}8mR7q0~Bhv=tOOt}dvL3$@R}%X|HW9-zy$S-@FQWkotC3o8 z&=PBPI;Zax=Z?wK%Motscq%Y1xMrnm?<)XAj2jnyuzIslHXgqn{TN`?wZmPNIKrAg zc9AiXvv2HXdVx>WQTUGT$mbTallgbT!dk#G3GSAJlOVzpLpEeGJ`*sldI8y+RbAI# z+nLm*JTg;QXyc-QR47<2@zzc2DAs%Hm($pub*3VJ>10EYBOEr2RpZ8}HHZ<{FwU9* z;H*zMZ!>ve=3a28Fra0ZYImK&VREsQB%b$#=dF6e-u28!|4gmW!E9S@fgXp z;fBMpVk2%UdQEf=D;5mvod*sIxT$fhKZcS96~mTZB#g=>InpP*sRKO2iDIslT6BRF zqnVSC7tkuuvR1ghg<7m2k__GRZ9_qMRc&kF!VPcneW4>=7j$@x+F^Kx3LW8vm(W*n zs8te&bSWi`WJU=V92K&M$HF9$6DRDNKHRLoBV12Gjv{Uu*rws51S^Z%+VbAfX9(iV zQ4Uc!=95G8C?ISGri{G~4lg#Q$7hHQw(&YqpWCQe8zCgyLIT6I(LaJeaL3FZB72BC zFdwZSVu@G}Y^1G?6B^-9)#mp#KM~KCa7Y4t z4ux5g2tPYYYc&`>=VDqm3s&C0R?kd7^Z>pATkTDB*N0gm?RG|UXS4J}d4T?%=D~}@ z;rE{1Uwt89_xWx{wvd?b_76~r-hawDx@&eGo3ie%3-)V3i=W~>1Ntl~}r&>?^MJDs9qvTKI7+_C_Bf?+E_BV$>U zocUqeh^8rutU5q3mNjr95yJYvE_fC<-C6Cfe%}T>d@k{hQPPJMONq%xf<=Q~JtsAx z8o=qQ%C1sQX^d@M4VSRu+;%FWy;98e3UQOWXI8pu&f5Y#{eYO;+qW)r zwd|yAI+7KRBTbGN_TRgFP^(cbaRqRxfBS`Z*JVfDd#;c^>s?p4yYM|%xcZ(ecm==f z3I}(+=L$jZxxzo!q;e&R2L)`;CbDn62*xtP-?-YJ5%F2t1bKMZYo9Z@JG{>ID;FK5 zY<#Z>yq{;^VP7)7s!hUA0wv9FE7{)MoA&FPwG-byj+!V3;B?;n*T8pgXmy*fv${ub z3j;oDZOD4kWZQfDL4^PxnfRxJ&w__?{>;^@(84uYyj+yXYUA$#d74zI1k32(6l6~m z|2jJNMs7(-YZpzhiIZRv}DPOyU|_Jo?KHvhtI4u3dH4?uYDl3#TX z8xFU|r*XYfvJ{%;GL}8zVchiCm_~H*+YCStD3Z0mXPVNfb*3=69c11e0;z(T#dqK! z?*M4KRGoOBK{_?G)7es<%F%fz~aNYgpIyt;Nfr|IMDRnBTIqR@5pC*ea% zp@0r(@}*Bt;Z2Gi9y5gYCS7Um)CEH6uPSr%V2biFV4}={?312WE|T1zscR^-fIJuv zqF=&+9x9I)*6sjbL-y*Q!HX(1{0H$<=xH4GotMy*_BI?M&vhlPB00fP?Uo??6Y{iy zdueIy==@bHr$Vo~IMz^g6cjZcwLf)9@Wc!UmqYF^cE#;W#@XJKT#qD*Er0T3dLQ~R zTzo?Sj=s!WY=w~)_>wG$v}Nl&cp_6ST}wI&S0~|rZ*R)0CZ8v3(en+4(-g?uiw1s8 zq9OLDF5~xQ(gJ5(e5#*E6uOZcveGmCvb+zMSd%wk8KE3wbZE}}lmzuXin)Ap1SDyL z+}n2m6ZE%lAjT~Cg<^T+cM36)*Xd?R6Ex5R-m?A~&~yJ!atjSyk8ze~0oG@zFyYO3ul-9S9PP$*4=`#6~;+I~TxVdH~f)=9ywCQ}(yI@tv;4@`6f z&0BRZR||@ZZ(ViDHzxV6B_(rWcPveBvUrczqGx{4M`h(6eh@z$r*RW3zo7bqz}o7K zD0au1(gqz&##ILOy_<+>hj6eLr^brQsng{1Gppty(YG02)K1CewEi?lC<_zOI0s&# zLf%rw~p z!}h&N5Yhz^w+9$>Yhb;T*Q)XAJyuQEajiqfMb--ib#v$mpyTuF=gN~?IIBm& zQEuJ=T6AveG#={;dB-AR`~rmRLGv)b+#?7ys$Sf7RzbBeY4cysz~&#tBt4BL?9JP^AsFX!5i4;(4*z>)msPQ=SA98uNBCo_QscS zZ7HsD4C_bQs9m~t))J|4ITS+T17G%>VVO4h3B+E|#t!M6sKj`x)Xq&Fo zIg;xI3EiZlYD|>}H66m!M2~NmOAQ~@KQK})hn>*9y5wc2`kWgd;H;}D@})u=@kk#s zT6tn2JcF}D!?VN-zTAaY@J`>vuykXE!F_v<7dwJ{@&g0Br|IkQ9U@Y=3H3AUNuJE^C?$4rjrX4z zEZQ=#iC#PZPkr|A`s;{!3E-`3lPn8~y7|oc`n&|}?z9lnzDn2ieEMI0FtKl$`PI)! zN~XS0>;7?~-l>BYZ=Elva8Ni~o7j$D%xN>>aO@5zg=NRKM-GoC7F28~%|+Uep!ov>WYWH6{^Qj5?)f5mRXqfBa;Lz4zyVxsY-54$sG2@8Z7j&N6((p-DbpA-A7i(K(_rc|GQC5nbL-rI~E&~0Xw z1+6bC2SbU@!n926hX+g8K&;{3(geLE&sPxjxVzO8sM&Wbp+HB^K?gxbVymSpPv&X0 z&P0!#TZFmo*wdZY$5#e$w23WM`oL8bZFe;kiMG>;qBd#&sNryq*Qt@ z{*S>Ww#F6;`Jcpm#W-D?EEDI3Gc;*yL1}L+cK6t(#z21=<-16fAP?Tmxyu$<_385$ zQTP{HDs4T`XC<=-J3OTbGV2Ph#8uO+Sm~y{B|yH>TFMnl#Ka_y+C50HHIaW39gyf` zxs>7$B?FSa4vqovdx&B11nQf|vRNa8rP6iRcib!UE~0BT?=baLNiB6Esns`%GTIbO z8U0#MT~u2&^$Va83@6fceYo7=@k^V*{^q~`(8o9byB4m=QSrDr<|}5vp-1OuIwl9FyPv4y zby|tVgfdXLlUJu{zDxHh=-$JmYZ+dq$6&av8rinhxdOmTQ@nl>fatbX@wseAGANCj z9*Cy^<7#MazV@jsjNZF%inH&A|AL==bk!JAEhD#fH25lS$M@&Hb;Z2#UkgyCOLf=w z&CWUh{?fE|Lw*19^}wqcDP|$zu;{yMfUEK_rbm63t~l zOfCQfXea9{`la{uxMyG2SiI1l zw>)OVS}{v^DaJog&ZotfvkVn7V3Cjz+rCDuk3M$jIduzJ5g+2g)Q@+)tU{mph~uPl ze}>KhXYf5_(p{FpB21C?4BY{ZO?SC;@ny8a%N$M!QdG__+S6aC7kGS(tt>K`X; zBo-e_eQNtB4`>8CyRiw=GDdEiy)b)5<}#G2p+F{~ss5J&!KBZX zr`($%c`!t7_D|~Uk1@YnB3EODrJ{+1Mw4+rIu4aH_44HXk>iD3ZO7pn(}9)KqhR9Y z-b~yV-r}IB#Fas(JS@7?O);Xz0sA1@vpDha+V%U>*JhC^Gc~Y$FK%z~j%C|WCe!^g zdI?(th8vxxacLhz1lkZaF z;j8m51ZVwpc_hG?p_rb^JQVh|9edypO}-+N>c5}R0C&J%d>Scl425jF{#REZHPZ6D zG?U1-t5?pfT}E2QC#98#EWqKzuhzKfuMkq$sCY%^nU^gtegV{HZX_<_B7GVGymwoy zddq4nVshh>gRA2|xO6M(1B@K4FJ}+x@!Tni<8*0c)=Re(wY(P0Vgh6{5*p`Tdn>K` zuqa^_l&b|xfO46AcNWR3xa_7&teXe|2P8>2Q+}olU^_HgJPc9Aip_reTvRT5yr8_x z+7pq^amU+3hLXv(9Cv+uL&iG#G9lf7B*Hui1W*qKyI}^)(PQPd^`0hmt)8gS2U3^) z3b;j^^P`$=-sx;?GGp8erszFz%+oMVcNvDy54}rK zjbu*UGCIpa061){sCgvBJnF$Vcg1;|l#0r)xbbyB(klu=^OKwIUb3jMq7RrD9l3MJ zy^=$=UW3*>=Eg^!7av(N#{-}S%7JNdlk!AT{}~j&zn&G#Hh3VeoN<*EH9(HVM%0ft z8BtitVZ-ZY1`#^K+xp0L=AAsU9-9Uhba$gNKlwA3a{o@nBQjOv z4Mwc2a#y7te9~7?$hEzgHa@8$1yEP?!j}Rl@pVnDg^J}8M((7^)v3_^RvQYLxYVVU zvIWtQ9VllRa!ez3OR00@ZEbY{2%D{Iw!Y!_$2J~wINK~>IR@eynK`3?<_i}?7YJF7 zotIW$5FzZ?<;>HY=+t$WxV<@) zC*dKLYaF4ALImkVJFJG(osKMWX3g(SDl$lg@Uu@uJ$dgv|LBdMe7sG(d&yel+~X+$ za^}pXc@v%I-F8&0oFhPr73h7!n%y9> z5Dkpn!BIHtA!$q+`C7WG{QYLb(-&XKf~{wh=28zhlUw53gtYW4H7dSnR@gt?-n(IM zu)mpa=6^7c+U8c{5)$susybi{+t*-Qq)XxtLFw+5afjA><>=^2!S>F7_{Cp~4u=N?6k>>z(@Vrl znl=x?FdvCNVea_I>C<_`RiBTy&}KuwWS@)N`+Q@?Zn(|-$5>q?p}Kr&@ZqiWuiz&saPS;v&)LqYJkt_oe(A{8}&og<2-Wu7^~W;6?1VC$Ouki#&!x$ zuZLd>)&~Gu#?2jf=9u4KX{l4MxdY@*Y8hySOVek8kP%_k8TG;Pw8YEMf4_MtEx#$?DbI+Q0QM5|JpZ=_dfB_=~gzR{XB z)g-6~EIJ%2Np*n%{a7h@@le$S_Zk>op^vTsyrI1m(<#oI+C(Sit#%Bx^X;h#?PD|> z&_nrlz@YT`IvA1Kg4=HcAg#nUsC-{u%?f0^8EN>flxVMIRz{jtzB*CnKz1y0=X!E! zmY?nziNFmXUMwud|B1l*YgTJt?z2=c)5*^h)`TEdeJE_dV=J~Q$AJe}`!p2WI2!;} z;9Q$jU4z{$73J|*Mv zpR&j7MY0DQs7ez&AitT}3qmvihF@g`v{U@t1`O7G*9Kx_H>^nl4zxE2p!jVdxBKX# zLRlEc6NU2J3FAkAU=4s4M8z+8 zgso(n)emBb@FU`M0S$b5dvjy9186ji>&MFB(JqRBT4-!&MEN}p%HJ>f;NBUCxSRNTLPl79@RaH`nUah8mZXdn55&@)tE@dbcaqx3Qi&hY(Ph%@kCbfE) z1P}Qb99^~n&z)4;TD5p+{l|lAVStfBYpdae(?#j*G(WMJ7 zoM|3%8|U{$98(G=n)^iUmYJQC@T( z6PY&Mz`7rkA_RqN7b4O>FGV!uJ`08eLbf`o#8$(L;=wM} z=2jUn@v+*_BRFEYhf8&apQS_LWcJtB!!&UI!S}DC*Ti2Puqw1%Q?eC z&6{>6VvudXMdI`=OA1bsha=w0b9^kz3;{;LIC*u|wIuAq6LD|~I%$7~#;dfX_yUz- zPX$J>+R`Vea12=b!hFch_}a*RJ2;^ZR~2 z-{T{akn|JEhm+w$2dnmCiVwyrgc!bZZuHlTj3fqa#vB*$QS`m4khC9))J%r+ks5tp zL~YW#%vfc4KkWtg9>9-Fo&wrHH|nC5h<4eWLIay@>Y##L_meKDe1Q0GD*_t@&}T+4*3hJ8 ztWT8U<9RC%r`+EGEWMTEu{Q`+N~?8_U~s{Bj_^~n;OH-hA1Y4yl+OHSa@!v)&J}l? zZGG|vY`7xvJo(&!^~~+mPc@xDo9!XRX}c`gdbTI$mos!;Oq2A)zYfMJ*wb9Fvfh^9 zGzP2LB%|Bnk9t%t{B*+{Zo_-5=Z4bx4OV@gD8y1;$u7i|ILi{TunMzJ5+3)8_gnI7lufjk%Iam+_Zw>e(pNZ#Z83Fe`(Qe@V*I#f%BR3d#2suJfk= zVa?0<>tvI2y&t$RV=OEcZE zp_ff6Q?Ynfei4BpsaxE;^G^JaJL17W%|My~j6?g-^#)UiKtwI^1Vntz4I>emhA zV-^Y{lefPV2|LM}h=UlXD16lR2=66Tr-wvFj9>Lp#IPm)mNsdP(0Z5t0yhv@8e!(m zheFocfxwvhnm{;ge>Gx@NEPkAUSnP_B%s?0ZR7W|MR?e)ySma58A3JM<1)!aUq3n^ zz8rzmF}b)Bb5oTdmPhs^!Y-Nj=%padbH72~?)OM2j93-uBm6OHJ8GZBIcs^*yXZO9 zOL2@aakQuHt%kuw^uoRAXX%RWD~pM2K3VtW-~Vw& z5vx!-kB=~d;#0_8k-tYh%66eYo_$<#n^U+b8eG0qL2?h7F&H@(^6yZF>?X9l=9Osq z5(QO&tK98eu^JfbL^$jt$mi_mNOSj^!Nx6{pF&we<<5}(UffZXLsiE~f}|aChSAYg zgb&X;7=-{uD`aAtS@je{ikM%EQm_R0*`|K5S*ZTyXRn)f0rZiyhxQ{!1~+;se#X3t zLjXL7c{Ho;w!gS;=`&(q23;bqC~QRB(!ykvOpLw-f<_@UlP@}1@fcC#j^8WdaIJlU zr#IHWIRjq$GbXA4tV@9ESVHT=P9uU=n1r_o9w`;?HvC(SkL@*5KPgWn)K zp&#M@3&OX026_Dy;GzIyvj~f;0NqBFxGq#eHwPa;n+YxCKcvIoC^9XHP;e&1bJdbe z!kKoD!@wPP{4CNm85HZp)1lMReMOHSdLylcDK0kE_gDw%YcS2H5etGe0`W|{)n{ht zn;W@*z|zyw4z5RZipi1_S~`%8-2|etbW+XDw=a(WL$Y9vKL$gBw6KfpDHu$L;KR#% zpe=V9Y3rX+4Aui}U^WE=oS0j^qnT5Mj)*i?x@bGMZxjfO)*hmiCGTt?Nu zgYoI0!T3pZSRQS{{Aa?P^S8KF<&sTUy5WuQjl-(?W;t49aZljFvx4Tc@j^(MGnKKji9{t_evD7r@?imJ|4XsD%FGkxyEUiOX&UqpUF&MVe*um(WFR4ShaH@6N4xHLac&e6^k{AXT)R@_jM;8u z&bX(36(a!!SIBYQvy2z+U9|)ivSHjdB=2VHG8bSMnDj1-sMF;&C?-Eh;S0 z(t-M~y`;^Oxum0BssGPKOpriBv@0%s%7KFYx%z+4n5(yT^5ZW#-G?tSo5K` zI-LyCTu3>szX^het)}CA6817w`)AzCuVoT|)r%t(M9G&wNXGOR1dQTYJu`}vy*3FvOio-FbENMS^Ga{WGU?8n5n0Sn zp8vl-MX^&4=U*ey*suX!`o|lDS~%6ltl(5_UY#** zZy~Z2bA3_Pl`Vvx0L_ZT;bV9aZB__^cA=2x90oUm8~^6%rf?e1scw6mi!UwH>8l<; zajWk0lvtXX#e39_kwz$zQ8&M6WV&qyH$K*85abSfTfZ5d$gq!0r1wvw-L_9dlG>or z)p1KsGrx{dklXw3&atB1j!6~|eUDenh5BTIrT6r*fiTeI)`Ay!vG1Rv47(~z86QWo z!!kYAC9mLHN2FYMz>$v+B-Ob_@7o%a@Uv87LMv#5a`D$IWUQ5ZvhU#--uFhx#e+-@ ztPcr->5RcMLhGYEhh;){v~!S+;Y-97J*t3@Vu0Mv_53im#rAVkCG6-|ERz)-FH+Sx z)F@Da*=T%N;Ct;PGf{1NXPPAq1}zhi+Lq{4vDNPw(2~{s*daD`h&R}-M#!J6WOA{M zC3f57NSSf-6&v9JOh}n~ypf6fr2=yTF$}InqD96QD-jor-dx@f@BKW#M}#M&4jC?q zu?9B+&g9VspPJO9bm=sSKI`JVoxVO6czGqir(`nMmWh9j_PnBGdH=wM%GzNZ)@9F? zZ{;1W1?aR$VhEyDBI!*~RnI$5s_K!ylq*NY=Hhhk?iL@kny)(4g7z7l@6KGJ}{|7$v960N2n1H9UfG;~+7I1HL-b+;hdZ z`qib%a`5SB3;H~sW*tpo9F9|PI0DFGQ7O-#$D-S8_c>+^PvTtSS04;pB4aWN4uP}1 zX86F>Y`Y-L+D^#nU(b(5&!vm~;TAA?RHMD0Bq_5S7QYw2 zn%|@~2@UzVTa$MkZPJdB7^1Vd1H>>?_u0hC5+lyJzGi|~E^+ioj29}yD)L%r$w9@i zjkyagBRLcijAz!zK_;*j)x7||b7dHVhr0Z~l99lLIv?KQ7h(9deDwKr>+$CAs^N$k z`H+t@Y|Hi>MU}dBc6IA?c2Xn$qUFcN=%fQ{a$$uXqy4)4I_G$uZNY@yA1f(zUROUQ z2)GyX=!X~S-~*}P0jHG5g(eeD%h<(vwBI#U5Io|j)T6gJ4$^X*QVG`RTO9{mSw}JJ zR`O&GwG{l^qdIkVmrPkabKT(B2J`#QZA_>k9i6;xX)t~zH&b{Rc&e)>(V*sganLLY zI|lk5+)Bt9Zmku(TRJH;tb<3un=Ao|@!6Y%m>q`JatHZ8xI8IOa`_@N`5Wfd zYg9C}mI{#90ptVd^XF+=-8<8$?hiP?%bQ++(4X6Q{{7({Weecnwv3%yue|=jXa50A ChPgig