# install.packages("bayesrules") library(bayesrules) library(dplyr) data(fake_news) # make it a tibble for the sake printing fake_news <- tibble::as_tibble(fake_news) fake_news |> glimpse() # proportion of each type of article fake_news |> group_by(type) |> summarise( n = n(), prop = n / nrow(fake_news) # <- is there a NSE way # of getting total rows of # original DF? ) # we can also do this with the tally function fake_news|> group_by(type) |> tally() |> mutate(prop = n / sum(n))