/* implementation of binary tree, in the course he just jumps into search algorithms but uses built in javascript data structures to jump a bunch of steps, here I write everything from scratch */ /* next challenge to is write a function to read in a json file and parse it as a tree??? */ #include #include typedef struct Node { int value; struct Node* prev; } Node; typedef struct Stack { int len; Node* head; } Stack; Stack* new_stack() { Stack* s = malloc(sizeof(Stack)); s->head = NULL; s->len = 0; return (s); } Node* new_node(int value) { Node* n = malloc(sizeof(Node)); n->prev = NULL; n->value = value; return (n); } void json_file_to_tree(char* filepath) { // TODO!!!! } void push(Stack* stack, Node* node) { if (stack->len == 0) { stack->head = node; stack->len++; } else { node->prev = stack->head; stack->head = node; stack->len++; } } int pop(Stack* stack) { if (stack->len > 0) { Node* node = stack->head; int node_val = node->value; stack->head = node->prev; stack->len--; free(node); return (node_val); } return (-9999); } typedef struct IntBinaryNode { int value; struct IntBinaryNode* left; struct IntBinaryNode* right; } IntBinaryNode; IntBinaryNode* new_int_binary_node(int value) { IntBinaryNode* n = malloc(sizeof(IntBinaryNode)); n->left = NULL; n->right = NULL; n->value = value; return (n); } typedef struct BinaryTree { IntBinaryNode* root; } BinaryTree; BinaryTree* new_binary_tree(IntBinaryNode* n) { BinaryTree* b = malloc(sizeof(BinaryTree)); b->root = n; return (b); } void add_child_node(IntBinaryNode* parent, IntBinaryNode* child, char position) { if (position != 'l' && position != 'r') { printf("ERROR: position must be either (l)eft or (r)ight\n"); exit(1); } if (position == 'l') { if (parent->left != NULL) { printf("ERROR: left position of parent is already occupied"); exit(1); } else { parent->left = child; } } else if (position == 'r') { if (parent->right != NULL) { printf("ERROR: right position of parent is already occupied"); exit(1); } else { parent->right = child; } } } // prints the bottom row of a tree void print_binary_tree(IntBinaryNode* node) { if (node->left == NULL && node->right == NULL) { printf("<%d>\n", node->value); } else { print_binary_tree(node->left); print_binary_tree(node->right); } } void walk_tree(IntBinaryNode* current_node, Stack* stack) { if (current_node->left == NULL && current_node->right == NULL) { printf("looking at value: %d\n", current_node->value); push(stack, new_node(current_node->value)); } else { printf("looking at value: %d\n", current_node->value); push(stack, new_node(current_node->value)); walk_tree(current_node->left, stack); walk_tree(current_node->right, stack); } } void print_stack(Stack* stack) { if (stack->len == 0) { printf("empty stack\n"); } else { printf("[ "); while (stack->len > 0) { int res = pop(stack); printf("%d ", res); } printf("]\n"); } } int main() { /* lets create the following tree 12 4 6 10 11 44 77 */ IntBinaryNode* root_node = new_int_binary_node(12); BinaryTree* tree = new_binary_tree(root_node); add_child_node(root_node, new_int_binary_node(4), 'l'); add_child_node(root_node, new_int_binary_node(6), 'r'); add_child_node(root_node->left, new_int_binary_node(10), 'l'); add_child_node(root_node->left, new_int_binary_node(11), 'r'); add_child_node(root_node->right, new_int_binary_node(44), 'l'); add_child_node(root_node->right, new_int_binary_node(77), 'r'); Stack* stack = new_stack(); walk_tree(root_node, stack); printf("the len of the stack is %d\n", stack->len); print_stack(stack); free(stack); return (0); }